首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
在含有 In2S3的硅酸盐电解液中对ZL108 铝合金进行了微弧氧化处理。采用扫描电镜(SEM)、光学轮廓仪、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学工作站等检测手段,研究了添加In2S3对 MAO 膜层微观结构、相组成和耐蚀性等的影响。结果表明,In2S3的加入提高了微弧氧化电压,使膜层成膜速率增加,从而导致膜层厚度增加。在含有In2S3的电解液中形成的膜层致密性更好,膜层显微硬度提高,膜层的耐蚀性增强。膜层主要由α-Al2O3、γ-Al2O3和 SiO2 相组成。XPS检测结果表明In2S3在氧化过程中转变为In2O3。因此,添加In2S3优化了MAO膜层结构,提高了MAO膜层的综合性能。  相似文献   

2.
在硅酸盐电解液体系中对7075铝合金表面采用微弧氧化(MAO)法制备陶瓷膜层,并借助扫描电镜、三维立体显微镜、X射线衍射仪、显微硬度计、涂层附着力划痕仪和摩擦磨损实验机等对微弧氧化膜层的形貌及性能进行研究。结果表明:电流密度对微弧氧化膜层的组织与性能有较大影响。α-Al_2O_3是微弧氧化膜层的主要组成相,微弧氧化膜层具有较好的显微硬度及耐磨性能。当电流密度达到10 A/dm~2时,膜层的显微硬度与耐磨性能最优。  相似文献   

3.
在磷酸盐碱性电解液中加入氟锆酸钾(K_2ZrF_6),利用微弧氧化技术(MAO)在AZ31镁合金表面制备了陶瓷膜层,研究了电解液中K_2ZrF_6对MAO膜层的形貌、相组成和耐腐蚀性能等的影响。结果表明,电解液中添加K_2ZrF_6能使MAO膜层变得更加均匀,也降低了膜层的表面粗糙度,所形成的MAO膜层主要是由Mg O,Mg F2和Zr O2相组成。长时间浸泡和电化学测试结果表明,电解液中添加K_2ZrF_6提高了MAO膜层的耐蚀性。本实验电解液中添加2.5 g/L K_2ZrF_6时,所形成的MAO膜层的耐蚀性最好,而过高浓度K_2ZrF_6会对膜层的耐蚀性产生负作用。  相似文献   

4.
钒掺杂对铝合金微弧氧化层结构和性能影响   总被引:1,自引:0,他引:1  
通过在电解液中添加NH4VO3制备了钒掺杂铝合金微弧氧化层,研究了不同添加浓度对铝合金微弧氧化层结构和性能的影响。利用扫描电镜(SEM)观察微弧氧化层表面形貌,能谱(EDS)仪分析了膜层V、O元素含量,XPS测定V、O元素的价态,X射线衍射(XRD)仪分析了相组成,极化曲线评定了耐蚀性。结果表明,微弧放电区温度高于1714.38K时?3VO开始转变形成V2O5,低熔点的V2O5在电弧作用下优先熔化而抑制了微弧氧化层表面多孔层的形成。钒掺杂对微弧氧化层相组成影响较小,有利于提高膜层的厚度和耐蚀性。  相似文献   

5.
为提高ZL303铝合金耐蚀性能,采用微弧氧化技术在ZL303铝合金表面制备陶瓷质氧化膜。通过扫描电镜观察了微弧氧化膜层表面及截面的微结构。利用X射线衍射仪分析了膜层的物相组成。采用腐蚀电化学和高温浸泡实验测试了微弧氧化膜层的耐蚀性。结果表明:所制备的膜层厚度约为13μm,主要由α-Al_2O_3和γ-Al_2O_3组成,外表面存在大量微米级等离子放电微孔。经微弧氧化处理后,试样的电化学阻抗半径增大,自腐蚀电位上升,腐蚀电流密度减小。在高温腐蚀环境中,微弧氧化膜层能有效阻挡腐蚀介质对铝合金基体的侵蚀破坏,耐蚀性能得到提高。  相似文献   

6.
在Ce(SO_4)_2添加量为0.5 g/L的氧化液中对ZL108铝合金进行了微弧氧化处理,研究了添加Ce(SO_4)_2对微弧氧化膜特性的影响。利用扫描电镜(SEM)观察了微弧氧化膜形貌,能谱仪(EDS)分析了膜层元素,X射线衍射仪(XRD)分析了膜层相组成,测试了膜层厚度、硬度和氧化电压变化曲线。结果表明,添加Ce(SO_4)_2后有利于微弧氧化膜生长,导致氧化电压和硬度增加,Ce元素进入膜层并改变了微弧氧化膜形貌,使膜层γ-Al_2O_3相含量增加。  相似文献   

7.
目的提高铝合金钻杆材料微弧氧化膜层的性能。方法在电解液中加入0~4 g/L的SiC微粉,对7E04铝合金钻杆材料表面生成的微弧氧化膜层进行改性,研究了微弧氧化膜层的氧化电压-时间曲线、厚度、显微硬度、表面形貌、膜层元素含量、相组成和耐蚀性。结果随着SiC微粉质量浓度的增加(0、1、2、3、4 g/L),氧化电压不断增加,在4 g/L时几乎达到550 V。微弧氧化膜层的厚度和显微硬度增加,各浓度下的膜层厚度分别为42.3、43.6、45.0、45.3、50.0μm,膜层显微硬度分别为341.8、375.2、394.4、405.1、436.8MPa。同时,放电孔的孔径和烧结盘的尺寸也逐渐增加。在微弧氧化过程中,SiC被氧化成SiO_2,基体中的Al被氧化成α-Al_2O_3和γ-Al_2O_3,膜层中的相组成主要有α-Al_2O_3、γ-Al_2O_3、SiO_2和莫来石。同时,随着SiC微粉浓度的增加,膜层中的C、Si元素含量增加,Al元素和O元素的含量降低。膜层的腐蚀速率分别为1.11×10~(-1)、3.598×10~(-2)、5.223×10~(-2)、6.762×10~(-2)、1.323×10~(-1) mm/a,呈现出先减小后增加的趋势,耐蚀性先增加后降低。结论 SiC微粉的添加增加了膜层的厚度,改变了膜层的表面形貌,同时提高了微弧氧化膜层的显微硬度、耐蚀性等性能。  相似文献   

8.
在含石墨微粒的硅酸钠电解液中,采用不同的电流密度(1, 5, 10,15和20 A/dm~2)在ZL108铝合金上制备了微弧氧化(MAO)膜层。利用SEM、EDS、XRD、涡流测厚仪和显微硬度计对微弧氧化膜层的特性进行了研究。结果表明,随着电流密度的增加,微弧氧化膜层的增厚导致氧化电压增加。微弧氧化膜表面多孔,微孔的直径和烧结盘尺寸逐渐增加。膜层表面C、Si元素的相对含量随电流密度增加而增多,C元素在膜层表面呈均匀分布,膜层截面C元素主要集中在膜层外侧。膜层主要由SiC, SiO_2,θ-Al_2O_3,α-Al_2O_3组成, SiC相来源于石墨与SiO_2反应。随电流密度增大,膜层硬度增加。膜层耐蚀性呈先升高后降低的趋势,并在5 A/dm~2时膜层腐蚀速率最低。  相似文献   

9.
在含有纳米TiO_2的电解液中对铝合金进行微弧氧化处理,用以研究掺杂纳米TiO_2对铝合金微弧氧化成膜机理及性能的影响。利用扫描电镜(SEM)观察微弧氧化膜形貌,能谱仪(EDS)分析膜层Ti、Al、O等元素含量,X射线衍射仪(XRD)分析相组成,测定膜厚、硬度和氧化液中TiO_2表面电荷,建立了掺杂改性模型。结果表明,加入纳米TiO_2后,氧化初期电压随TiO_2添加量增加逐渐升高、5min后电压逐渐降低;氧化膜表面孔洞数量和尺寸减小,成膜效率、膜层致密度和表面疏松层硬度提高。纳米TiO_2在氧化膜表面均匀分布,截面不均匀分布。氧化膜主要由γ-Al_2O_3、Mullite和少量Si组成。  相似文献   

10.
在不同电流密度下制备了ZL108 Na2WO4改性微弧氧化膜,研究了电流密度对Na2WO4改性微弧氧化膜特性的影响。利用扫描电镜(SEM)观察氧化膜表面形貌,能谱仪(EDS)、X射线衍射仪(XRD)以及X射线光电子能谱(XPS)分别测试了氧化膜截面元素分布、相组成以及W的化合价,极化曲线测试了耐蚀性。结果表明,随电流密度增大,微弧氧化膜由致密变为多孔,微孔数量增加、尺寸变大,膜层增厚。膜层中W、O含量增加,Al含量下降。微弧氧化膜由γ-Al2O3、Al和Si 3个相组成,W元素在膜中主要以WO3形式存在。微弧氧化膜的耐蚀性随电流密度增加而提高。  相似文献   

11.
采用含有Na2WO4和不同NaOH浓度的硅酸盐系列电解液,利用微弧氧化(MAO)技术在Al-Cu-Li合金表面制备陶瓷涂层,研究NaOH浓度在1-9 g/L范围内对涂层显微组织和腐蚀行为的影响。利用X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对膜层的组成和微观结构进行表征。结果表明,NaOH促进MAO反应中氧化物的生成,使膜层厚度增加。电化学腐蚀测试(极化曲线、交流阻抗谱)和质量损失试验确定膜层的耐蚀性随NaOH加入量的增加而提高,且在7g/LNaOH溶液中制备的膜层耐蚀性最优。全浸泡腐蚀试验也给出一致的结果。  相似文献   

12.
为了研究ZL108铝合金微弧氧化膜的Na2Mo O4改性机理,在添加5种不同浓度的Na2MoO4溶液中对其进行微弧氧化处理。利用扫描电镜(SEM)观察微弧氧化膜表面形貌,用能谱仪(EDS)分析截面Mo、O元素含量,用XPS测定Mo、O元素的价态,用X射线衍射仪(XRD)分析相组成,采用极化曲线评定耐蚀性。结果表明,微弧氧化电压随着Na2MoO4浓度的增加而下降。微弧放电区温度高于1823.84 K时,Mo O2-4开始转变形成MoO2,抑制了微弧氧化膜表面多孔层的形成,提高了膜层的致密性、厚度和耐蚀性。浓度的改变对相组成影响较小。  相似文献   

13.
在相同参数下对Si C_p/6092铝基复合材料进行了不同时间的微弧氧化处理,记录了电解液温度的变化,测定了微弧氧化膜的膜层厚度。利用SEM和XRD分析了氧化膜的微观形貌和相组成。结果表明,氧化初期氧化膜生长较快,20 min后生长速度趋于平稳;氧化膜表面分布着微小孔洞和细小裂纹,随着时间的增加,孔洞尺寸变大、数量变少,表面粗糙度增加;氧化膜主要由α-Al_2O_3相、γ-Al_2O_3相和莫来石相组成。  相似文献   

14.
在含有Na_2SiO_3和KOH的电解液中以恒定电压氧化方式对工业纯铝进行微弧氧化处理,研究电压对非连续微弧氧化成膜特性的影响.采用XRD及SEM对微弧氧化膜的相组成及表面形貌进行分析.结果表明:非连续微弧氧化的电流在工作间隔处出现一定程度的降低;非连续工作模式的膜层生长速率与连续模式基本相同,并且都随工作电压的增加而增加;不同成膜模式所生长的微弧氧化膜均由较多的γ-Al_2O_3和少量的α-Al_2O_3相组成;非连续成膜方式对微弧氧化陶瓷膜的形貌影响不大,且未造成氧化膜分层现象;不同成膜模式下所形成的微弧氧化陶瓷层的耐磨性能和耐腐蚀性能随工作电压变化具有相同的变化规律,均随电压的增加而增大;非连续成膜提高了微弧氧化控制的灵活性.  相似文献   

15.
在NaAlO_2电解液体系中,采用自制微弧氧化成套设备对AZ91D镁合金进行微弧氧化。采用5因素4水平正交设计试验法,以膜层厚度和耐蚀性为指标,综合考察了各因素对膜层结构和性能的影响,确定最佳工艺条件为20g/L NaAlO_2,7g/L Na_2B_4O_7,频率500Hz,正占空比20%,氧化时间30min。对该工艺下制备的微弧氧化膜层进行SEM、XRD分析,膜层含有较多的NaAlO_2、MgO和Al_2O_3晶体相;相对基体而言,微弧氧化膜层耐蚀性提高2~3个数量级。动电位极化曲线及电化学交流阻抗测试进一步表明,AZ91D镁合金微弧氧化后,其耐蚀性明显提高。  相似文献   

16.
为了研究添加Al_2O_3微粉对AZ31A镁合金微弧氧化膜特性影响,在不同浓度Al_2O_3微粉氧化液中对其进行了微弧氧化处理。利用扫描电镜(SEM)观察了微弧氧化膜形貌,能谱仪(EDS)分析了膜层表面Ca、Mg、O、Al元素分布,X射线衍射仪(XRD)分析了相组成,测定了膜厚、硬度和氧化液中Al_2O_3表面电荷,讨论了改性机理。结果表明,加入Al_2O_3微粉后,氧化电压随Al_2O_3添加量增加先增加后降低;氧化膜表面孔洞数量和尺寸减小,膜层表面Ca元素分布逐渐减少,成膜效率降低,膜层致密度和表面疏松层硬度提高,氧化膜主要由MgO和MgO_4等相组成。  相似文献   

17.
研究电解液中La(NO_3)_3含量对7075铝合金微弧氧化膜层性能的影响。利用XRD、SEM、共聚焦显微镜和摩擦试验机分析膜层的相组成、表面形貌及耐磨系数等。结果表明:微弧氧化膜层主要由α-Al_2O_3和γ-Al_2O_3相构成。随着La(NO_3)_3含量增加,γ-Al_2O_3相呈增加趋势。电解液中添加La(NO_3)_3后膜层覆盖均匀;当w[La(NO_3)_3]3‰时,膜层具有"火山口"微孔特征;当w[La(NO_3)_3] 3. 5‰时,膜层出现大量数微米以上蚀坑;随着La(NO_3)_3含量增加,膜层显微硬度先增加后减小,表面粗糙度在5. 4μm~7. 5μm间变化,膜层的摩擦因数降低。  相似文献   

18.
在LF6铝合金表面制备得到了微弧氧化膜层,通过扫描电镜、X射线衍射仪对膜层的微观结构、相结构进行了表征,通过盐雾腐蚀试验和湿热腐蚀试验对防锈铝基体及微弧氧化膜层进行了加速腐蚀试验。结果表明,LF6铝合金表面制备的微弧氧化膜层主要由α-Al_2O_3、γ-Al_2O_3组成,膜层表面呈多孔结构,内部致密。LF6铝合金在盐雾腐蚀条件下表面出现絮状腐蚀产物,产生腐蚀现象,对环境条件的适应能力不能满足要求;微弧氧化样品在加速腐蚀后表面没有发现裂纹,也没有发生明显的腐蚀现象,对环境条件的适应能力较好。  相似文献   

19.
分别在3种不同电解液体系(硅酸盐体系、铝酸盐体系、磷酸盐体系)对石墨烯镁基复合材料表面进行微弧氧化,并对微弧氧化后膜层的微观组织形貌和物相组成进行分析,通过电化学和浸泡实验对其耐蚀性进行测试。结果表明:硅酸盐体系微弧氧化膜层表面光滑平整,微孔分布均匀;铝酸盐微弧氧化膜层较薄,孔隙尺寸最小;磷酸盐体系膜层微孔分布不均匀,表面存在较多裂纹;硅酸盐体系微弧氧化膜层物相组成主要为SiO_2和MgO,磷酸盐和铝酸盐体系膜层物相组成主要为MgO。3种电解液体系微弧氧化膜层耐蚀性能较基体复合材料提高一个数量级左右,其中硅酸盐体系微弧氧化膜层耐蚀性最好。  相似文献   

20.
采用微弧氧化(MAO)技术,以硅酸盐为主要电解液成分,通过加入稀土元素铈以及石墨烯添加剂,在7050高强铝合金表面制备微弧氧化膜层。利用扫描电镜(SEM)、体视显微镜、X射线衍射仪(XRD)、摩擦磨损试验机以及电化学工作站研究微弧氧化陶瓷膜层的形貌、粗糙度、相组成和元素分布以及耐磨性和耐蚀性。结果表明:同时加入4 g/L CeO2和10 g/L的石墨烯制备的复合膜层表面微孔尺寸明显降低,结构致密,耐磨性较好,粗糙度最低(1516.03 nm),膜层主要由α-Al2O3和γ-Al2O3组成。且此时的复合膜层自腐蚀电位最大,自腐蚀电流最小,耐腐蚀性最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号