首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheddar cheese proteolysis and lipolysis were accelerated using liposome-encapsulated enzymatic cocktails. Flavourzyme, neutral bacterial protease, acid fungal protease and lipase (Palatase M) were individually entrapped in liposomes and added to cheese milk prior to renneting. Flavourzyme was tested alone at three concentrations (Z1, Z2 and Z3 cheeses). Enzyme cocktails consisted of lipase and bacterial protease (BP cheeses), lipase and fungal protease (FP cheeses) or lipase and Flavourzyme (ZP cheeses). The resulting cheeses were chemically, rheologically and organoleptically evaluated during 3 months of ripening at 8 °C. Levels of free fatty acids and appearance of bitter and astringent peptides were measured. Certain enzyme treatments (BP and ZP) resulted in cheeses with more mature texture and higher flavor intensity in a shorter time compared with control cheeses. No bitter defect was detected except in 90-day-old FP cheese. A full aged Cheddar flavor was developed in Z3 and ZP cheeses, while treatment BP led to strong typical Cheddar flavor by the second month and did not exhibit any off-flavor when ripening was extended for a further month.  相似文献   

2.
This study aimed to evaluate the effects of incorporating liposome-encapsulated nisin Z, nisin Z producing Lactococcus lactis ssp. lactis biovar. diacetylactis UL719, or Lactobacillus casei-casei L2A adjunct culture into cheese milk on textural, physicochemical and sensory attributes during ripening of Cheddar cheese. For this purpose, cheeses were made using a selected nisin tolerant cheese starter culture. Proteolysis, free fatty acid production, rheological parameters and hydrophilic/hydrophobic peptides evolution were monitored over 6 mo ripening. Sensory quality of cheeses was evaluated after 6 mo. Incorporating the nisin-producing strain into cheese starter culture increased proteolysis and lipolysis but did not significantly affect cheese rheology. Liposome-encapsulated nisin did not appear to affect cheese proteolysis, rheology and sensory characteristics. The nisinogenic strain increased the formation of both hydrophilic and hydrophobic peptides present in the cheese water extract. Sensory assessment indicated that acidic and bitter tastes were enhanced in the nisinogenic strain-containing cheese compared to control cheese. Incorporating Lb. casei and the nisinogenic culture into cheese produced a debittering effect and improved cheese flavor quality. Cheeses with added Lb. casei and liposome-encapsulated nisin Z exhibited the highest flavor intensity and were ranked first for sensory characteristics.  相似文献   

3.
The objective of this study was to evaluate the effect of capsular and ropy exopolysaccharide (EPS)-producing strains of Lactococcus lactis ssp. cremoris on textural and microstructural attributes during ripening of 50%-reduced-fat Cheddar cheese. Cheeses were manufactured with added capsule- or ropy-forming strains individually or in combination. For comparison, reduced-fat cheese with or without lecithin added at 0.2% (wt/vol) to cheese milk and full-fat cheeses were made using EPS-nonproducing starter, and all cheeses were ripened at 7°C for 6 mo. Exopolysaccharide-producing strains increased cheese moisture retention by 3.6 to 4.8% and cheese yield by 0.28 to 1.19 kg/100 kg compared with control cheese, whereas lecithin-containing cheese retained 1.4% higher moisture and had 0.37 kg/100 kg higher yield over the control cheese. Texture profile analyses for 0-d-old cheeses revealed that cheeses with EPS-producing strains had less firm, springy, and cohesive texture but were more brittle than control cheeses. However, these effects became less pronounced after 6 mo of ripening. Using transmission electron microscopy, fresh and aged cheeses with added EPS-producing strains showed a less compact protein matrix through which larger whey pockets were dispersed compared with control cheese. The numerical analysis of transmission electron microscopy images showed that the area in the cheese matrix occupied by protein was smaller in cheeses with added EPS-producing strains than in control cheese. On the other hand, lecithin had little impact on both cheese texture and microstructure; after 6 mo, cheese containing lecithin showed a texture profile very close to that of control reduced-fat cheese. The protein-occupied area in the cheese matrix did not appear to be significantly affected by lecithin addition. Exopolysaccharide-producing strains could contribute to the modification of cheese texture and microstructure and thus modify the functional properties of reduced-fat Cheddar cheese.  相似文献   

4.
Sodium reduction in cheese can assist in reducing overall dietary Na intake, yet saltiness is an important aspect of cheese flavor. Our objective was to evaluate the effect of partial substitution of Na with K on survival of lactic acid bacteria (LAB) and nonstarter LAB (NSLAB), pH, organic acid production, and extent of proteolysis as water-soluble nitrogen (WSN) and protein profiles using urea-PAGE, in Cheddar cheese during 9 mo of storage. Seven Cheddar cheeses with molar salt contents equivalent to 1.7% salt but with different ratios of Na, K, Ca, and Mg cations were manufactured as well as a low-salt cheese with 0.7% salt. The 1.7% salt cheeses had a mean composition of 352 g of moisture/kg, 259 g of protein/kg and 50% fat-on-dry-basis, and 17.5 g of salt/kg (measured as Cl). After salting, a faster initial decrease in cheese pH occurred with low salt or K substitution and it remained lower throughout storage. No difference in intact casein levels or percentage WSN levels between the various cheeses was observed, with the percentage WSN increasing from 5% at d 1 to 25% at 9 mo. A greater decrease in intact αs1-casein than β-casein was detected, and the ratio of αs1-casein (f121–199) to αs1-casein could be used as an index of ripening. Typical changes in bacteria microflora occurred during storage, with lactococci decreasing gradually and NSLAB increasing. Lowering the Na content, even with K replacement, extended the crossover time when NSLAB became dominant. The crossover time was 4.5 mo for the control cheese and was delayed to 5.2, 6.0, 6.1, and 6.2 mo for cheeses with 10, 25, 50, and 75% K substitution. Including 10% Mg or Ca, along with 40% K, further increased crossover time, whereas the longest crossover time (7.3 mo) was for low-salt cheese. By 9 mo, NSLAB levels in all cheeses had increased from initial levels of ≤102 to approximately 106 cfu/g. Lactococci remained at 106 cfu/g in the low-salt cheese even after 9 mo of storage. The propionic acid concentration in the cheese increased when NSLAB numbers were high. Few other trends in organic acid concentration were observed as a function of Na content.  相似文献   

5.
Cell viability, autolysis and lipolysis were studied in Cheddar cheese made using Lactococcus lactis subsp. cremoris AM2 or Lactococcus lactis subsp. cremoris HP. Cheddar cheese was made in triplicate over a 3 month period and ripened for 238 days at 8 degrees C. Cell viability in cheese was lower for AM2 (a non-bitter strain) than for strain HP (a bitter strain). Autolysis, monitored by the level of the intracellular marker enzyme, lactate dehydrogenase (EC 1.1.1.27) in cheese 'juice' extracted by hydraulic pressure, was much greater in the cheese made using AM2 than that made with HP. Lipolysis was determined by the increase during ripening of individual free fatty acids (FFA) from butyric (C4:0) to linolenic acid (C18:3) measured using a high performance liquid chromatographic technique. Levels of individual FFA from butyric (C4:0) to linolenic (C18:3) acids increased significantly (P<0.05) during ripening in cheeses made with either starter culture. Palmitic (C16:0) and oleic (C18:1) acids were the most abundant FFA throughout ripening in all cheeses. Levels of caprylic (C8:0), myristic (C14:0), palmitic (C16:0) and stearic (C18:0) acids were significantly higher (P<0.05) in cheeses manufactured with Lc. lactis subsp. cremoris AM2 than in cheeses manufactured with Lc. lactis subsp. cremoris HP. Differences in levels of lipolysis between strains was not due to differences in the specific lipolytic or esterolytic activities in cell free extracts of the strains as measured by activity on triolein (lipase) and p-nitrophenylbutyrate (esterase) substrates. Therefore, evidence is provided for a relationship between the extent of starter cell autolysis and the level of lipolysis during Cheddar cheese ripening.  相似文献   

6.
To determine whether adventitious nonstarter lactic acid bacteria (NSLAB) might affect cheese flavor and quality, we studied a population of NSLAB present in 30 premium quality Cheddar cheeses (3-mo ripened) produced at a commercial facility in the United States. DNA fingerprinting analysis with a sensitive strategy for arbitrary priming polymerase chain reaction showed that 75 isolates corresponded to at least 18 distinct nonstarter organisms. According to ribotype database comparisons of representatives from the 18 groups, 9 matched Lactobacillus (closest to paracasei species), 8 matched Streptococcus thermophilus, and 1 matched to a Lactococcus species. This finding indicated that among the 75 NSLAB isolates, Lactobacillus made up 64%, S. thermophilus 32%, and Lactococcus 4%. Isolates representing 11 NSLAB groups were characterized for protease, peptidase, and diacetyl production. Based on this phenotypic analysis, two Lactobacillus isolates were evaluated as adjuncts in Cheddar cheese. All of the NSLAB identified from the adjunct cheese at 3 mo by DNA fingerprinting consisted of the adjunct lactobacilli, showing that the adjunct strains predominated throughout the early stages of ripening. The impact of adjunct lactobacilli was evident after 6 mo when free amino acids significantly increased and sensory scores improved in adjunct cheese as compared with a control cheese. The largest impact was found in adjunct cheese containing a blend of both lactobacilli strains. These results show that certain adventitious NSLAB positively contribute to flavor development.  相似文献   

7.
8.
The concentrations of L- and D-lactic acid and free fatty acids, C4:0 to C18:3, were quantified in a range of commercial enzyme-modified Cheddar cheeses. Lactic acid in Cheddar enzyme-modified cheeses varied markedly depending on the manufacturer. Differences in the ratio of L- to D-lactic acid indicate that cheeses of different age were used in their manufacture or contained varying levels of nonstarter lactic acid bacteria. The level of lipolysis in enzyme-modified cheese was higher than in natural Cheddar cheese; butyrate was the predominant free fatty acid. The addition of exogenous acetate, lactate, and butyrate was also indicated in some enzyme-modified cheeses and may be used to confer a specific flavor characteristic or reduce the pH of the product. Propionate was also found in some enzyme-modified cheese products and most likely originated from Swiss-type cheese used in their manufacture. Propionate is not normally associated with natural Cheddar cheese flavor; however, it may be important in the flavor and aroma of Cheddar enzyme-modified cheese. Levels of lipolysis and glycolysis appear to highly controlled as interbatch variability was generally low. Overall, the production of enzyme-modified Cheddar cheese involves manipulation of the end-products of glycolysis (lactate, propionate, and acetate) and lipolysis to generate products for specific applications.  相似文献   

9.
A sanitized cheese plant was swabbed for the presence of nonstarter lactic acid bacteria (NSLAB) biofilms. Swabs were analyzed to determine the sources and microorganisms responsible for contamination. In pilot plant experiments, cheese vats filled with standard cheese milk (lactose:protein = 1.47) and ultrafiltered cheese milk (lactose:protein = 1.23) were inoculated with Lactococcus lactis ssp. cremoris starter culture (8 log cfu/mL) with or without Lactobacillus curvatus or Pediococci acidilactici as adjunct cultures (2 log cfu/mL). Cheddar cheeses were aged at 7.2 or 10°C for 168 d. The raw milk silo, ultrafiltration unit, cheddaring belt, and cheese tower had NSLAB biofilms ranging from 2 to 4 log cfu/100 cm2. The population of Lb. curvatus reached 8 log cfu/g, whereas P. acidilactici reached 7 log cfu/g of experimental Cheddar cheese in 14 d. Higher NSLAB counts were observed in the first 14 d of aging in cheese stored at 10°C compared with that stored at 7.2°C. However, microbial counts decreased more quickly in Cheddar cheeses aged at 10°C compared with 7.2°C after 28 d. In cheeses without specific adjunct cultures (Lb. curvatus or P. acidilactici), calcium lactate crystals were not observed within 168 d. However, crystals were observed after only 56 d in cheeses containing Lb. curvatus, which also had increased concentration of d(−)-lactic acid compared with control cheeses. Our research shows that low levels of contamination with certain NSLAB can result in calcium lactate crystals, regardless of lactose:protein ratio.  相似文献   

10.
11.
We made Milled curd Cheddar cheese with Lactococcus starter and an adjunct culture of Lactobacillus helveticus I or Lactobacillus casei T subjected to different attenuation treatments: freeze shocking (FS), heat shocking (HS), or spray drying (SD). Proteolysis during cheese ripening (0 to 6 mo), measured by urea-PAGE and water-soluble nitrogen, indicated only minor differences between control and most adjunct-treated cheeses. However, there were significant differences in the effect of Lactobacillus adjuncts on the level of free amino nitrogen in cheese. Cheeses made with FS or HS Lb. helveticus adjunct exhibited significantly greatest rates of free amino group formation. Lipolysis as measured by total free fatty acids was consistently highest in adjunct-treated cheeses, and FS Lb. casei-treated cheeses showed the highest rate of free fatty acid formation followed by FS Lb. helveticus treated cheeses. Mean flavor and aroma scores were significantly higher for cheeses made with Lb. helveticus strain. Freeze-shocked Lb. helveticus-treated cheeses obtained the highest flavor and aroma scores. Sensory evaluation indicated that most of the adjunct-treated cheeses promoted better texture and body quality.  相似文献   

12.
The present study was undertaken to study the effects of application of natural wood smoke on ripening of Cheddar cheese, and to determine the effects of smoking before or after ripening on cheese quality. A 20-kg block of Cheddar cheese obtained immediately after pressing was divided into six approximately 3-kg blocks and ripened at 8 degrees C for up to 270 d. One 3-kg block was taken after 1 d, 1, 3, 6, or 9 mo and smoked for 20 min, then returned to the ripening room for further ripening. Cheeses were sampled at intervals for lactobacilli counts, moisture, pH, and proteolysis. Sensory analysis was conducted on 6 and 9-mo-old cheeses by a trained sensory panel (n = 7). Results show that application of natural wood smoke did not significantly affect cheese pH or primary proteolysis during ripening. However, secondary proteolysis as assessed by the concentrations of free amino acids was generally higher in smoked cheeses than in control cheeses after 6 mo of ripening. Cheese smoked after 6 mo of ripening had better smoked flavor than that smoked after 9 mo of ripening. Cheese smoked after 3 mo of age and further ripened for 6 mo had the highest smoked flavor intensity. It is concluded that it is best to smoke cheese after ripening for at least 3 mo.  相似文献   

13.
A major problem with reduced-fat cheese is the difficulty in attaining the characteristic flavor and texture of typical full-fat versions. Some previous studies have suggested that high hydrostatic pressure (HHP) can accelerate the ripening of full-fat cheeses. Our objective was to investigate the effect of HHP on reduced-fat (~7.3% fat) Cheddar cheese, with the goal of improving its flavor and texture. We used a central composite rotatable design with response surface methodology to study the effect of pressure and holding time on the rheological, physical, chemical, and microbial characteristics of reduced-fat Cheddar cheese. A 2-level factorial experimental design was chosen to study the effects of the independent variables (pressure and holding time). Pressures were varied from around 50 to 400 MPa and holding times ranged from 2.5 to 19.5 min. High pressure was applied 1 wk after cheese manufacture, and analyses were performed at 2 wk, and 1, 3, and 6 mo. The insoluble calcium content as a percentage of total Ca in cheeses were not affected by pressure treatment. Pressure applications ≥225 MPa resulted in softer cheese texture during ripening. Pressures ≥225 MPa increased melt, and resulted in higher maximum loss tangent values at 2 wk. Pressure treatment had a greater effect on cheese microbial and textural properties than holding time. High-pressure-treated cheeses also had higher pH values than the control. We did not observe any significant difference in rates of proteolysis between treatments. In conclusion, holding times of around 5 min and pressures of ≥225 MPa could potentially be used to improve the excessively firm texture of reduced-fat cheese.  相似文献   

14.
A current industry goal is to produce a 75 to 80% fat-reduced Cheddar cheese that is tasty and appealing to consumers. Despite previous studies on reduced-fat cheese, information is critically lacking in understanding the flavor and flavor chemistry of reduced-fat and nonfat Cheddar cheeses and how it differs from its full-fat counterpart. The objective of this study was to document and compare flavor development in cheeses with different fat contents so as to quantitatively characterize how flavor and flavor development in Cheddar cheese are altered with fat reduction. Cheddar cheeses with 50% reduced-fat cheese (RFC) and low-fat cheese containing 6% fat (LFC) along with 2 full-fat cheeses (FFC) were manufactured in duplicate. Cheeses were ripened at 8°C and samples were taken following 2 wk and 3, 6, and 9 mo for sensory and instrumental volatile analyses. A trained sensory panel (n = 10 panelists) documented flavor attributes of cheeses. Volatile compounds were extracted by solid-phase microextraction or solvent-assisted flavor evaporation followed by separation and identification using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Selected compounds were quantified using external standard curves. Sensory properties of cheeses were distinct initially but more differences were documented as cheeses aged. By 9 mo, LFC and RFC displayed distinct burnt/rosy flavors that were not present in FFC. Sulfur flavor was also lower in LFC compared with other cheeses. Forty aroma-active compounds were characterized in the cheeses by headspace or solvent extraction followed by gas chromatography-olfactometry. Compounds were largely not distinct between the cheeses at each time point, but concentration differences were evident. Higher concentrations of furanones (furaneol, homofuraneol, sotolon), phenylethanal, 1-octen-3-one, and free fatty acids, and lower concentrations of lactones were present in LFC compared with FFC after 9 mo of ripening. These results confirm that flavor differences documented between full-fat and reduced-fat cheeses are not due solely to differences in matrix and flavor release but also to distinct differences in ripening biochemistry, which leads to an imbalance of many flavor-contributing compounds.  相似文献   

15.
A detailed investigation was undertaken to determine the effects of four single starter strains, Lactococcus lactis subsp. lactis 303, Lc. lactis subsp. cremoris HP, Lc. lactis subsp. cremoris AM2, and Lactobacillus helveticus DPC4571 on the proteolytic, lipolytic and sensory characteristics of Cheddar cheese. Cheeses produced using the highly autolytic starters 4571 and AM2 positively impacted on flavour development, whereas cheeses produced from the poorly autolytic starters 303 and HP developed off-flavours. Starter selection impacted significantly on the proteolytic and sensory characteristics of the resulting Cheddar cheeses. It appeared that the autolytic and/or lipolytic properties of starter strains also influenced lipolysis, however lipolysis appeared to be limited due to a possible lack of availability or access to suitable milk fat substrates over ripening. The impact of lipolysis on the sensory characteristics of Cheddar cheese was unclear, possibly due to minimal differences in the extent of lipolysis between the cheeses at the end of ripening. As anticipated seasonal milk supply influenced both proteolysis and lipolysis in Cheddar cheese. The contribution of non-starter lactic acid bacteria towards proteolysis and lipolysis over the first 8 months of Cheddar cheese ripening was negligible.  相似文献   

16.
17.
Commercial milk protein concentrate (MPC) was used to standardize whole milk for reduced-fat Cheddar cheesemaking. Four replicate cheesemaking trials of three treatments (control, MPC1, and MPC2) were conducted. The control cheese (CC) was made from standardized milk (casein-to-fat ratio, C/F approximately 1.7) obtained by mixing skim milk and whole milk (WM); MPC1 and MPC2 cheeses were made from standardized milk (C/F approximately 1.8) obtained from mixing WM and MPC, except that commercial mesophilic starter was added at the rate of 1% to the CC and MPC1 and 2% to MPC2 vats. The addition of MPC doubled cheese yields and had insignificant effects on fat recoveries (approximately 94% in MPC1 and MPC2 vs. approximately 92% in CC) but increased significantly total solids recoveries (approximately 63% in CC vs. 63% in MPC1 and MPC2). Although minor differences were noted in the gross composition of the cheeses, both MPC1 and MPC2 cheeses had lower lactose contents (0.25 or 0.32%, respectively) than in CC (0.60%) 7 d post manufacture. Cheeses from all three treatments had approximately 10(9) cfu/g initial starter bacteria count. The nonstarter lactic acid bacteria (NSLAB) grew slowly in MPC1 and MPC2 cheeses during ripening compared to CC, and at the end of 6 mo of ripening, numbers of NSLAB in the CC were 1 to 2 log cycles higher than in MPC1 and MPC2 cheeses. Primary proteolysis, as noted by water-soluble N contents, was markedly slower in MPC1 and MPC2 cheeses compared to CC. The concentrations of total free amino acids were in decreasing order CC > MPC2 > MPC1 cheeses, suggesting slower secondary proteolysis in the MPC cheeses than in CC. Sensory analysis showed that MPC cheeses had lower brothy and bitter scores than CC. Increasing the amount of starter bacteria improved maturity in MPC cheese.  相似文献   

18.
Lipolysis was evaluated in Urfa cheese made from raw and pasteurized goats’ and cows’ milk with mesophilic or thermophilic cultures. The acid degree values (ADVs) of the cows’ milk cheeses were significantly (P < 0.05) higher until 60 d of storage than that of cheese made from goats’ milk. Total free fatty acid (FFA) contents of goats’ milk cheese were significantly (P < 0.001) lower than that of cows’ milk cheese throughout ripening, whereas goats’ milk cheese flavour was higher (P < 0.05) than cows’ milk cheese. Pasteurization of milk prior to cheese-making has a negative influence, not only on the level of lipolysis throughout ripening, but also on the relative amounts of short chain FFAs and sensory properties of the cheeses (P < 0.001). Cheese produced without starter bacteria underwent significantly (P < 0.05) higher lipolysis than cheeses produced with mesophilic or thermophilic starter bacteria, while cheese made with thermophilic starter culture had similar flavour to cheese made without starter culture.  相似文献   

19.
Cheddar cheeses were made from pasteurised milk (P), raw milk (R) or pasteurised milk to which 10 (PR10), 5 (PR5) or 1 (PR1) % of raw milk had been added. Non-starter lactic acid bacteria (NSLAB) were not detectable in P cheese in the first month of ripening, at which stage PR1, PR5, PR10 and R cheeses had 104, 105, 106 and 107 cfu NSLAB g−1, respectively. After ripening for 4 months, the number of NSLAB was 1–2 log cycles lower in P cheese than in all other cheeses. Urea–polyacrylamide gel electrophoretograms of water-soluble and insoluble fractions of cheeses and reverse-phase HPLC chromatograms of 70% (v/v) ethanol-soluble as well as -insoluble fractions of WSF were essentially similar in all cheeses. The concentration of amino acids were pro rata the number of NSLAB and were the highest in R cheese and the lowest in P cheese throughout ripening. Free fatty acids and most of the fatty acid esters in 4-month old cheeses were higher in PR1, PR5, PR10 and R cheeses than in P cheese. Commercial graders awarded the highest flavour scores to 4-month-old PR1 cheeses and the lowest to P or R cheese. An expert panel of sensory assessors awarded increasingly higher scores for fruity/sweet and pungent aroma as the level of raw milk increased. The trend for aroma intensity and perceived maturity was R>PR10>PP5>PR1>P. The NSLAB from raw milk appeared to influence the ripening and quality of Cheddar cheese.  相似文献   

20.
Attenuated starter bacteria cannot produce acid during cheese manufacture, but contain enzymes that contribute to cheese ripening. The aim of this study was to investigate attenuation of starter bacteria using high pressure treatment, for use in combination with a primary starter for Cheddar cheese manufacture, and to determine the effect of such adjunct cultures on secondary proteolysis during ripening. Lactococcus lactis ssp. cremoris HP and L. lactis ssp. cremoris 303 were attenuated by pressure treatment at 200 MPa for 20 min at 20 °C. Cheddar cheese was manufactured using untreated cultures of both these starter strains, either alone or in combination with their high pressure-treated equivalents. High pressure-treated starters did not produce acid during cheese manufacture and starter counts in cheeses manufactured using high pressure-treated starter did not differ from those of the controls. Higher levels of cell lysis were apparent in cheese manufactured using high pressure-treated strains than in the controls after 26 d of ripening. Small differences were observed in the peptide profiles of cheeses, analysed by reversed-phase HPLC; cheeses manufactured using high pressure-treated starters also had slightly higher levels of amino acids than the relevant controls. Overall, addition of high pressure-treated starter bacteria as a secondary starter culture accelerated secondary proteolysis in Cheddar cheese.

Industrial relevance

Attenuated starters provide extra pool of enzymes, which can influence cheese ripening, without affecting the cheese making schedule. This paper presents an alternative method for attenuation of starter bacteria using high pressure treatment and their subsequent use to accelerate secondary proteolysis in Cheddar cheese during ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号