首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Based on a field analysis of slip vectors from Cretaceous and Tertiary rocks and coupled with rift basin analysis in north China, the Cenozoic deformation history of the Tancheng–Lujiang (Tan–Lu) Fault Zone can be divided into three main phases: early Tertiary normal faulting and northwest–southeast extension; Miocene normal faulting and northeast–southwest to north‐northeast–south‐southwest extension; and Quaternary dextral strike–slip faulting and east‐northeast transpression. The early Tertiary extension, which was responsible for rift basin formation in north China, originated from back‐roll mantle convection induced by westward subduction of the Pacific Plate beneath the Asia continent. The Miocene extension occurred possibly in association with the process of the Japan Sea opening. The Quaternary dextral slip was mainly localized along the middle part of the Tan–Lu Fault Zone and resulted from the far‐field effect of the late‐stage India–Eurasia convergence.  相似文献   

3.
Ganyanchi (Salt Lake)basin, located in the central part of the Haiyuan Fault, northeastern corner of the Tibetan plateau, is the largest pull-apart basin along this fault. Due to its location in northeastern Tibet, the Ganyanchi Basin preserves an important sedimentary record of tectonism and climate change associated with progressive growth of the Tibetan plateau. The sediments of this basin also contain abundant information regarding the deformational history of the bounding strike-slip fault, i.e., the Haiyuan Fault. Therefore, a detailed study on the depository history of the Ganyanchi Basin is of great importance. Earlier studies only focused on regional geological mapping and paleoseismic research, however, no sedimentologic or chronological work has been done in the Ganyanchi pull-apart basin. To address this problem, we drilled a 328m-deep borehole, named HY-C8, at the south of the cross-basin fault and near the active depocenter, and employ magnetostratigraphic analyses and seismic reflection data to constrain the age and to deduce the evolving history of the basin. The deep borehole profile shows that the stratigraphy of the basin can be divided into three main units (Unit Ⅰ, Ⅱ and Ⅲ), which began to deposit at about 2.76, 2.33 and 1.78Ma, respectively. The grain size of the deposits manifests an upward thinning trend, which probably implies the profile is a characteristic retrogradational sequence. The magnetic susceptibility results indicate that the playa lake probably was formed at about 1.78Ma ago, the corresponding playa-lake deposits recorded more than eight high susceptibility sections, which are most likely due to the iron sulfides (such as melnikovite, pyrrhotine etc.)that were usually produced in high-lake-level and reduction conditions. A combination of boreholes and shallow seismic reflection data indicates that the Ganyanchi Basin is mainly controlled by the cross-basin fault and its northern boundary fault, and the depocenter, probably deeper than 550m, lies in between these two faults. Finally, the sedimentary facies of the Ganyanchi Basin experienced a four-stage evolving history:eluvial facies (before~2.76Ma)to alluvial fan facies (about 2.76~2.33Ma)to distal alluvial fan facies (2.33~1.78Ma)to playa lake facies (1.78Ma~present). Based on accumulation rates, the stage of playa lake can be divided into two subchrons, and the depositional rates of subchrons 2 (about 0.78Ma~present)is as high as 232.5m/Ma, which probably was caused by the activity along the cross-basin fault in the Ganyanchi Basin.  相似文献   

4.
The fault along the southern margin of the Wuwei Basin, located in the eastern Hexi Corridor, NW China, plays an important role in the thrust fault system in the northern Qilian Mountains. The activities of this fault resulted in the generation of the Gulang earthquake(MS8.0) in 1927. Based on remote sensing image interpretation, geological and geomorphic observations in the field and 14C geochronological dating results, we conducted a detailed research on the geometry and kinematics of the fault. According to the discontinuous geometric distribution and variable strike directions, we divide this fault into 5 segments: Kangningqiao Fault(F1), Nanyinghe Fault(F2), Shangguchengcun-Zhangliugou Fault(F3), Tajiazhuang Fault(F4)and Yanjiazhuang Fault(F5). Results indicate that this fault, with a total of 60km long trace at the surface, has been active since the late Pleistocene. It behaves predominantly as a thrust fault and is accompanied with a locally sinistral strike-slip component along the Nanyinghe Fault(F2). Intensive activities of this fault in Holocene have caused extensive occurrence of dislocated landforms along its strike. Some measured displacements of the dislocated geologic or geomorphic units, combined with the 14C dating results, yield a vertical slip rate of (0.44±0.08)mm/a on this fault in Holocene, and a sinistral strike-slip rate of (1.43±0.08)mm/a on the Nanyinhhe Fault (F2) in late Pleistocene.  相似文献   

5.
Toru Takeshita  Koshi Yagi 《Island Arc》2001,10(3-4):495-505
Abstract The orientations of both healed extension microcracks and microcracks in quartz grains sealed mostly by carbonate minerals were measured from Cretaceous granodiorite core samples drilled along the Nojima Fault, southwest Japan. The preferred orientations of both healed and sealed microcracks consist of approximately three orthogonal sets, (components) A, B and C, in which A strikes NS–NW-SE and dips vertically, B strikes EW–NE-SW and dips vertically, and C is subhorizontal. Both the healed and sealed microcracks were possibly formed by hydraulic fracturing, and the successive release of tensile stress due to pore fluid overpressure in the principal stress directions could have caused this microcracking in mutually orthogonal directions. The quartz grains are also very moderately plastically deformed, which is indicated by the occurrence of kink bands and undulose extinction. The association of healed microcracks and kink bands in the quartz suggests that these microstructures formed under subgreenschist facies conditions (≈300°C) during hydrothermal activity that could have occurred immediately after the emplacement of granodiorite during the Late Cretaceous period. Based on both the preferred orientation of microcracks, and c-axis fabrics of kinked and unkinked grains (so called kink method), it is inferred that the σ1-and σ3-axis were oriented horizontally in NS–NW-SE and EW–NE-SW directions, respectively. The inferred paleostress field does not conform to the east–west-trending compression during the Quaternary period, but to the activation of EW–NE-SW-trending, left–lateral strike–slip faults during the Late Cretaceous period in southwest Japan.  相似文献   

6.
The Tan-Lu fault zone is the largest active tectonic zone in eastern China, with a complex history of formation and evolution, and it has a very important control effect on the regional structure, magmatic activity, the formation and distribution of mineral resources and modern seismic activity in eastern China. Xinyi City has a very important position as a segmental node in the Shandong and Suwan sections of the Tan-Lu fault zone. Predecessors have conducted research on the spatial distribution, occurrence and activity characteristics of the shallow crustal faults in the Suqian section of the Tan-Lu belt, and have obtained some new scientific understandings and results. However, due to different research objectives or limitations of research methods, previous researches have either focused on the deep crustal structure, or targeted on the Suqian section or other regions. However, the structural style and deep-shallow structural association characteristics of Xinyi section of Tan-Lu belt have not been well illustrated, nor its activity and spatial distribution have been systematically studied. In order to investigate the shallow crustal structure features, the fault activities, the spatial distribution and the relationship between deep and shallow structures of the Xinyi section of the Tan-Lu Fault, we used a method combining mid-deep/shallow seismic reflection exploration and first-break wave imaging. Firstly, a mid-deep seismic reflection profile with a length of 33km and a coverage number greater than 30 was completed in the south of Xinyi City. At the same time, using the first arrival wave on the common shot record, the tomographic study of the shallow crust structure was carried out. Secondly, three shallow seismic reflection profiles and one refraction tomography profile with high resolution across faults were presented. The results show that the Xinyi section of Tan-Lu fault zone is a fault zone composed of five concealed main faults, with a structural pattern of “two grabens sandwiched by a barrier”. The five main faults reveal more clearly the structural style of “one base between two cuts” of the Tan-Lu fault zone. From west to east, the distribution is as follows: on the west side, there are two high-angle faults, F4 and F3, with a slot-shaped fault block falling in the middle, forming the western graben. In the middle, F3 and F2, two normal faults with opposite dip directions, are bounded and the middle discontinuity disk rises relatively to form a barrier. On the east side, F2 and F1, two conjugate high-angle faults, constitute the eastern graben. The mid-deep and shallow seismic reflection profiles indicate that the main faults of the Xinyi section of Tan-Lu fault zone have a consistent upper-lower relationship and obvious Quaternary activities, which play a significant role in controlling the characteristics of graben-barrier structure and thickness of Cenozoic strata. The shape of the reflective interface of the stratum and the characteristics of the shallow part of the fault revealed by shallow seismic reflection profiles are clear. The Mohe-Lingcheng Fault, Xinyi-Xindian Fault, Malingshan-Chonggangshan Fault and Shanzuokou-Sihong Fault not only broke the top surface of the bedrock, but also are hidden active faults since Quaternary, especially the Malingshan-Chonggangshan Fault which shows strong activity characteristics of Holocene. The results of this paper provide a seismological basis for an in-depth understanding of the deep dynamics process of Xinyi City and its surrounding areas, and for studying the deep-shallow tectonic association and its activity in the the Xinyi section of the Tan-Lu Fault.  相似文献   

7.
Abstract The Mariana Trough is an active back-arc basin, with the rift propagating northward ahead of spreading. The northern part of the Trough is now rifting, with extension accommodated by combined stretching and igneous intrusion. Deep structural graben are found in a region of low heat flow, and we interpret these to manifest a low-angle normal fault system that defines the extension axis between 19°45' and 21°10'N. A single dredge haul from the deepest (∼5.5 km deep) of these graben recovered a heterogeneous suite of volcanic and plutonic crustal rocks and upper mantle peridotites, providing the first report of the deeper levels of back-arc basin lithosphere. Several lines of evidence indicate that these rocks are similar to typical back-arc basin lithosphere and are not fragments of rifted older arc lithosphere. Hornblende yielded an 40Ar/39Ar age of 1.8 ± 0.6 Ma, which is interpreted to approximate the time of crust formation. Harzburgite spinels have moderate Cr# (<40) and coexisting compositions of clinopyroxene (CPX) and plagioclase (PLAB) fall in the field of mid-ocean ridge basalt (MORB) gabbros. Crustal rocks include felsic rocks (70-80% SiO2) and plutonic rocks that are rich in amphibole. Chemical compositions of crustal rocks show little evidence for a 'subduction component', and radiogenic isotopic compositions correspond to that expected for back-arc basin crust of the Mariana Trough. These data indicate that mechanical extension in this part of the Mariana Trough involves lithosphere that originally formed magmatically. These unique exposures of back-arc basin lithosphere call for careful study using ROVs and manned submersibles, and consideration as an ocean drilling program (ODP) drilling site.  相似文献   

8.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   

9.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

10.
Abstract Sandstones from the Upper Cretaceous to Eocene succession of Central Palawan are rich in quartz grains and acidic volcanic rock fragments. Potassium feldspar grains and granitic rock fragments are commonly observed. The moderate to high SiO2 and low FeO plus MgO contents of the sandstones support the proposal that clasts were derived from a continental source region. Southern China (Kwangtung and Fukien regions) is inferred to be the source area of the sandstones. The sedimentary facies of the Upper Cretaceous to Eocene succession consist of turbidite and sandstones, suggesting that they were deposited in the deep sea portions of submarine-fans and basin plains situated along a continental margin. These features indicate that the Upper Cretaceous to Eocene succession of the Central Palawan were derived and drifted from the southern margin of China. The tectonic history related to the formation of Palawan Island is also discussed.  相似文献   

11.
The northeast margin of the Tibetan Plateau, a particularly important area to understand the mechanism of plateau formation, is characterized by large transpressional arcuate faults. There is debate on the amount of Quaternary sinistral displacement on the major Haiyuan Fault. Previously unrecognized systemic asymmetrical valleys have developed between the Haiyuan and Xiangshan faults. Southeast tilting and sinistral displacement on the northeast side of the Haiyuan Fault resulted in southeast migration of large rivers and asymmetrical widening of their valleys, leaving a systematic distribution of tilted strath terraces along their northwest sides. Where asymmetrical widening created by tilting kept pace with sinistral displacement, rivers have not been deflected, and the increase in valley width downstream from the fault should equate to total lateral displacement since river formation (e.g. Yuan River, a 7 km asymmetrical valley with a c. 2.2 Ma paleomagnetic age). Where river deflection and asymmetrical valley growth are coeval, valley width is less than total horizontal displacement (e.g. Hebao River, a c. 2.1 km asymmetrical valley with c. 2 km deflection). All rivers north of the Haiyuan Fault converge to cut across the Xiangshan Mountains as a gorge. Northeast thrusting of the upthrown side of the Xiangshan Fault has resulted in degradation and related strath terrace formation as the valleys asymmetrically widened. A probable earthquake‐induced landslide caused by movement on the Xiangshan Fault in latest Pleistocene blocked the gorge causing aggradation along all rivers and their tributaries. Deposition terraces were formed after the landslide dam was breached. Together with previous research on the Xiangshan Fault, it is concluded that there has been c. 7 km of Quaternary sinistral displacement on the Haiyuan and Xiangshan faults along the northeast margin of the Tibetan Plateau since the formation of rivers that intersect them. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract Field, geochemical and geophysical evidence show that the southern Zambales Ophiolite Complex attained its present-day configuration through the juxtapositioning of an arc terrane (San Antonio massif) to a back-arc crust (Cabangan massif). The San Antonio massif manifests island arc-related characteristics (i.e. spinel XCr [Cr/(Cr + Al)] >0.60; mostly plagioclase An92–95; pyroxene crystallizing ahead of plagioclase; orthopyroxene as an early, major crystallizing phase) which cannot be directly parental to the Cabangan massif transitional mid-ocean ridge basalt to island arc tholeiitic volcanic carapace. The two massifs are believed to be separated by a left-lateral strike–slip fault, the Subic Bay Fault Zone. Apart from the presence of highly sheared, allochthonous outcrops, the Subic Bay Fault Zone is generally defined by northwest–southeast trending magnetic and bouguer anomalies. The San Antonio massif was translated southward from the northern part of the Zambales Ophiolite Complex through the Subic Bay Fault Zone. This resulted into its suturing with the Cabangan massif and could have led to the formation of the present-day Subic Bay.  相似文献   

13.
合肥盆地和郯庐断裂带南段深部地球物理特征研究   总被引:17,自引:1,他引:16       下载免费PDF全文
根据重、磁、电、震资料联合反演和综合解释,研究了合肥盆地和郯庐断裂带南段深部结构特征和构造样式. 合肥盆地呈现深部印支面以下为逆冲断层、以上为张性正断层的构造样式,盆地构造反转发生在晚侏罗世,早白垩世是裂陷盆地形成的主要时期,早白垩世晚期合肥盆地发生构造反转,发育冲逆、冲推覆构造. 郯庐断裂带南段表现为“上正下逆”的构造变形样式和正花状构造特征,并经历了复杂的挤压走滑-引张正断层变形过程.  相似文献   

14.
Cascade rupture events often occur along large strike-slip fault zone.The 1920 AD M 81/2 earthquake ruptured all 3 segments of the Haiyuan Fault,and the Salt Lake pull-apart basin is the boundary between the west and middle segment of the fault.The data of trenching and drilling reveal 7 events occurring since last stage of late Pleistocene,and the two youngest events are associated with the historical records of 1092 AD (possibly) and 1920 AD respectively.These events are all large earthquakes with magnitude M>8,and the recurrence of them is characterized by earthquake clusters alternating with a single event.Now it is in the latest cluster which may last about 1000 years.Comparison of the paleoseismic sequence of this study and previous results reveals that the cross-basin fault in the Salt Lake pull-apart basin does not always rupture when cascade rupture events occur along the Haiyuan Fault,and likely ruptures only when the magnitude of the events is large (maybe M>8).Though there are many advantages in paleoseismic study in pull-apart basin,we should avoid getting the paleoseismic history of major strike-slip fault zones only depending on the rupture records of inner faults in pull-apart basins with large scale (maybe a width more than 3km).  相似文献   

15.
位于浙江省东部的永康盆地是典型的白垩纪陆相红盆.本文作者发现在永康盆地北东部的朝川组红层沉积中发育较深水暗色泥灰岩沉积,与较浅水红色细碎屑沉积呈互层或夹层产出,具渐变式湖相碳酸盐岩与陆源碎屑岩混合沉积的特征.控制该混合沉积形成的主要因素是湖盆浪基面之下的静水环境及干旱与潮湿气候的交替变化.通过对朝川组泥灰岩段沉积环境及成因进行分析,结合该泥灰岩段中保存的孢粉和植物化石组合,笔者认为该套湖相碳酸盐岩与陆源碎屑岩的混合沉积反映了浙东地区早白垩世晚期总体可能处于干热气候环境,但存在短时间内的干湿气候交替.  相似文献   

16.
The two mainstream deformation models of the Tibet plateau are continental escape model and crustal thickening model, the former suggests that the NW-trending Karakoram Fault, Gyaring Co Fault, Beng Co Fault and the Jiali Fault as the Karakoram-Jiali fault zone is the southern border belt and that the dextral strike-slip rate is estimated as up to 10~20mm/yr. However, research results in recent years show that the slip rates along those faults are significantly less than earlier estimates. Taylor et al. (2003)suggest that the conjugate strike-slip faults control the active deformation in the central Tibet. The lack of research on the slip behavior of the NE-trending faults in the central Tibet Plateau constrains our understanding of the central Tibet deformation model. Thus, we choose the NE-direction Qixiang Co Fault located at the north of the Gyaring Co Fault as research object. Based on the interpretation of satellite images, we found several faulted geomorphic sites. Using RTK-GPS ground control point and unmanned aerial vehicle (UAV)topographic surveying, we obtained less than 10cm/pix-resolution digital elevation model (DEM)in the Yaqu town site. We used the LaDiCaoz_v2.1 software to automatically extract the left-lateral offset of the largest gully on the terrace T2 surface, which is (21.3±7.1)m, and the vertical dislocation of the scarp on the terrace T2 surface, which is (0.9±0.1)m. The age of both U-series dating samples on the terrace T2 is (4.98±0.17)ka and (5.98±0.07)ka, respectively. The Holocene left-lateral slip rate along Qixiang Co Fault is (3.56±1.19)mm/a and the vertical slip rate is (0.15±0.02)mm/a. The kinematic characteristics of the sinistral strike-slip with normal slip coincide with the eastward motion of the central Tibet plateau, and its magnitude is in agreement with its conjugate Gyaring Co Fault, suggesting that the deformation pattern of the central Tibetan plateau complies with the conjugate strike-slip faults mode.  相似文献   

17.
帕米尔构造结及邻区的晚新生代构造与现今变形   总被引:20,自引:7,他引:13       下载免费PDF全文
陈杰  李涛  李文巧  袁兆德 《地震地质》2011,33(2):241-259
帕米尔构造结是中国大陆受板块动力作用和地震活动最强烈的地区之一.晚新生代帕米尔构造结北部向北楔入推移了约300km,但对这一变形过程至今未能很好的限定.帕米尔构造结的晚新生代构造变形在空间上是不对称的.帕米尔西缘表现为NW向的径向逆冲,伴随着塔吉克盆地东部块体绕垂直轴的逆时针旋转.在帕米尔东部,构造变形的方式、空间分布...  相似文献   

18.
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin.  相似文献   

19.
应用含油气盆地热史模拟系统, 对江汉盆地南部的钻井资料进行了模拟计算, 恢复了研究区的热史和埋藏史. 在此基础上, 正演了下志留统烃源岩成熟度的演化史. 研究结果表明,江汉盆地在印支期(240 Ma)以前处于稳定的低热流(50~55 mW/m2)状态, 印支期后热流开始整体升高. 潜北断裂以北地区的热流在中燕山期(155 Ma)达到峰值(~72 mW/m2), 断裂以南的热流在晚燕山期(40 Ma)达到峰值(~76 mW/m2). 晚喜山期后, 整个研究区的热流快速下降, 盆地开始冷却. 早三叠世末, 下志留统烃源岩在枝江、当阳、沔阳凹陷一带率先进入生油门限, 早侏罗世至早白垩世末烃源岩进入快速增熟期, 成熟度具有北高南低的特征. 晚白垩世末, 烃源岩热演化特征表现为东强西弱. 到了新近纪末, 烃源岩热演化终止. 研究区热史恢复和下志留统烃源岩成熟度演化的研究为合理评估烃源岩生烃量、排烃量和油气资源量提供了科学依据.  相似文献   

20.
The NE- to NNE-striking Tan-Lu Fault Zone (TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate, and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis, and indicates initiation of the Paleo-Pacific (Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号