首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
分阶式双渐开线齿轮的光弹试验与弯曲强度试验研究   总被引:3,自引:0,他引:3  
采用冻结切片三维光弹试验方法,对双渐开线齿轮的弯曲应力进行研究,试验结果与有限元计算相吻合;在高频疲劳强度试验机上完成软、硬齿面轮齿的弯曲疲劳强度试验,结果表明轮齿的断裂位于齿根处30°与40°之间,当齿厚变位系数为0.08时,双渐开线齿轮的弯曲强度大约提高了16%。  相似文献   

2.
吕天杰  李强 《机电工程》2012,29(4):381-384
为解决齿轮热处理过程中存在畸变、齿根处弯曲应力增加、齿轮的寿命降低等问题,将功能材料技术应用到齿轮工作接触面处(简称功能梯度齿轮)。首先,开展了单质齿轮性能与单质齿轮热处理后性能的对比分析;然后,建立了单质圆柱渐开线齿轮模型与功能梯度材料圆柱渐开线齿轮模型,对其进行了弯曲应力有限元计算,并对其性能进行了对比分析。将未经热处理的单质齿轮作为桥梁,建立了单质齿轮热处理后的性能与功能梯度材料齿轮性能之间的关系。功能梯度材料不仅在轮齿表面硬度与齿根弯曲应力方面比热处理后的齿轮有更好的性能,而且能避免齿轮热处理过程中产生的畸变、渗碳层不均匀等缺陷。分析结果表明:将功能梯度材料应用到齿轮上是可行的。  相似文献   

3.
利用光纤光栅传感器截面直径小的优势,将光纤光栅粘贴在直齿圆柱齿轮齿根过渡曲线处,测量弯曲应力将会得到比较好的测量效果。文中利用光纤光栅传感器测量了直齿圆柱齿轮弯曲应力,并对直齿圆柱齿轮弯曲应力解析计算的应力修正系数进行了优化。首先根据弹性理论的两个平面假设,提出在齿根表面一点上沿齿宽方向应力与该点至端面的距离有关,并且沿齿宽方向应力与弯曲应力的比值,在齿宽方向上服从指数函数变化规律;然后利用光纤光栅传感器,测量直齿圆柱齿轮弯曲应力;最后根据光纤光栅测量,优化直齿圆柱齿轮弯曲应力解析计算的应力修正系数。研究结果表明,直齿圆柱齿轮弯曲应力解析计算的应力修正系数取值偏大,比测量得到的应力修正系数大21.8%。直齿圆柱齿轮是最常见的传动装置基本零件,基于光纤光栅测量对直齿圆柱齿轮弯曲应力修正系数进行优化,可提高直齿圆柱齿轮强度设计的可靠性。  相似文献   

4.
齿根过渡曲线的曲率半径大小,直接影响渐开线起始圆直径和齿根强度。从理论上分析了非圆齿轮过渡曲线及根切界限。渐开线直齿圆柱齿轮的齿根过渡曲线有多种形式,过渡曲线对于轮齿弯曲强度有重要意义。为了提高非圆齿轮仿真结果的准确程度,构建了非圆齿轮齿根过渡曲线方程,分析了齿根过渡曲线上的弯曲应力,并与不同齿根过渡曲线的弯曲应力进行对比,也为后续的仿真、有限元分析提供了一定的依据。为保证正常啮合,合理设计齿根圆角大小,合理选用刀具,探讨了刀具齿顶圆角与轮齿齿根圆角之间的对应关系,有其重要的现实价值。  相似文献   

5.
为实现齿轮传动寿命的精确计算,需要探讨精确的轮齿齿根弯曲应力计算方法。文中将渐开线直齿圆柱齿轮齿根应力的影响因素分为5因素5水平,用正交试验表L25(45)组建了24组因素组合。依据渐开线齿轮范成加工原理及UG、ANSYS三维建模功能,建立的有限元齿根弯曲应力精确计算模型,并进行了24组数据计算。将其计算结果作为BP网络训练样本,得到了载荷作用于齿顶及单齿啮合区最高点时,渐开线直齿圆柱齿轮齿根弯曲最大应力计算的BP网络模型。用其计算结果与ANSYS计算结果对比,最大相对误差不超过2.4%。因此,该BP网络模型可直接用于齿根弯曲应力值的计算,特别是对于高精度齿轮传动齿根弯曲应力的计算。  相似文献   

6.
提出点线啮合齿轮齿根弯曲应力计算方法,修正了大齿轮的齿根弯曲应力计算公式,在公未中增加大齿轮弯曲强度提高倍数.通过有限元仿真和试验验证了点线啮合齿轮齿根弯曲应力计算方法,并得出点线啮合齿轮弯曲疲劳强度比渐开线圆柱齿轮至少要提高15%的结论.  相似文献   

7.
针对行星齿轮箱故障诊断的需求,以及内齿圈齿根应变难以准确测量的工程实际问题,提出了一种光纤光栅(fiber Bragg grating,简称FBG)动态测量内齿圈齿根应变的方法。首先,通过理论分析,仿真计算得到了内齿圈齿根应变的分布曲线以及变化曲线;其次,研究了光纤光栅在非均匀应变场作用下的传感原理,从测点布置以及测量系统构建等角度分析了所提出的测量方法;最后,在行星齿轮箱实验台上开展了内齿圈齿根应变的测量实验。实验与仿真结果对比分析表明,利用所提出的测量方法获取的内齿圈齿根应变信号表现出明显的单、双齿交替啮合区间,且每个区间的范围以及各区间下齿根应变的大小与理论计算结果具有较好的一致性。与传统方法相比,该方法更加适用于行星齿轮箱内狭小空间下齿根应变的在线测量任务。  相似文献   

8.
少齿差齿轮副在啮合时由于轮齿受载产生变形可能引发多对齿同时接触承载的情况[1],啮合齿对实际承担的载荷将下降。少齿差齿轮副啮合时存在多对齿同时接触承载的现象,且由于内外齿轮齿廓的凹凸曲率非常接近,啮合时齿面接触面积较大,接触力为分布力,在计算齿根弯曲应力时不宜按集中力处理,这些情况使得准确计算少齿差齿轮副的齿根弯曲应力变得复杂。现以大量有限元计算分析为基础,综合考虑多对齿同时接触承载这一情况,建立了适用于少齿差齿轮副齿根弯曲应力的计算方法,并进行了实验验证。  相似文献   

9.
仪器仪表行业广泛使用齿轮传动,齿轮强度的高低直接影响着仪器仪表的测试精度和可靠性。齿根过渡曲线的形状对齿根弯曲强度有重要影响,为了提高齿轮的弯曲强度,就有必要研究齿根过渡曲线。本文利用MATLAB软件,研制开发了齿轮弯曲强度的计算机仿真程序,该程序逐点计算齿轮过渡曲线处的弯曲应力大小,以便找出弯曲应力的最大值和最大应力发生的位置;同时利用有限元软件ANSYS,建立轮齿模型,仿真分析轮齿受力时的齿根弯曲应力的分布状态,本文研究为进一步进行齿轮弯曲强度的测试研究奠定了良好的理论基础。  相似文献   

10.
高压开关柜内接头温度在线监测系统的设计   总被引:2,自引:1,他引:2  
采用光纤光栅作为温度传感器,提出了测量高压开关柜内接头温度的在线监测系统。该系统主要由宽带光源、光纤光栅温度传感器、可调滤波器、光电转换电路、传输光纤以及系统软件组成。利用光纤光栅反射波长与温度具有良好线性关系的特性,测量不同温度下对应的光栅反射波长变化,经过数据处理,实时显示温度。系统能实现对多个开关柜内接点进行温度实时测量,并具有温度预警功能。对高压开关柜内接头温度进行了现场测试,测量误差在0.2℃以内。通过通信接口技术,系统能与电力控制中心连接,实现对高压开关柜内接头温度的远程实时在线监控。  相似文献   

11.
非对称齿廓齿轮弯曲疲劳强度理论分析与试验   总被引:11,自引:0,他引:11  
为提高齿轮承载能力设计齿轮两侧压力角不等的非对称渐开线新齿形,推导双压力角非对称齿廓齿轮工作齿侧与非工作齿侧的渐开线齿廓方程和齿根过渡曲线方程,通过迭代计算和优化策略提出非对称齿廓齿轮疲劳强度解析法计算公式。编制生成非对称齿轮齿廓的参数化程序,在此基础上建立非对称齿廓齿轮有限元分析模型。通过解析法对不同压力角组合的非对称齿廓齿轮弯曲应力和危险截面位置计算得出,随着工作齿侧压力角的增大齿根最大弯曲应力逐渐降低,单齿啮合区向齿顶偏移;通过对有限元模型进行计算得出的结果与解析法一致,应用最小二乘法拟合出非对称齿廓齿轮齿根弯曲应力随工作齿侧压力角变化的计算公式。采用数控电火花线切割方法加工制造非对称与标准齿廓齿轮,在高频疲劳试验机上采用双齿脉动加载方法对其进行疲劳强度试验。试验结果表明,非对称齿廓齿轮在相同寿命下比对称齿轮极限载荷提高了50%,非对称齿廓齿轮的应力值变化趋势与前两种方法是一致的。  相似文献   

12.
Generally, planetary gear type traveling reduction gear is composed of multiple planetary gear stages and has a hollow sun gear in the last stage planetary gear. In designing reduction gear, it is important to evaluate accurately the bending stress at the tooth root of the sun gear as the sun gear is the weakest component in the reduction gear system. Although bending stress can be calculated easily using gear standard codes such as the American Gear Manufacturers Association (AGMA) and International Organization for Standardization (ISO) 6336 for almost all gears, meticulous calculation is needed for the hollow sun gear because of its low backup ratio (rim thickness divided by tooth height) and comparatively large root fillet radius. In this study, a finite element analysis (FEA) is carried out to investigate the effect of rim thickness and root fillet radius on bending stress at the tooth root of the hollow sun gear. In standard codes, bending stress at the tooth root is calculated linearly with a constant slope for the backup ratio below 1.2. However, the effect of the rim thickness on bending stress is more complex in the planetary gear system. Bending stresses calculated by FEA with various backup ratios and root filler radii are compared with the bending stresses calculated by the standard codes.  相似文献   

13.
利用有限元法计算齿轮整个啮合过程的齿根弯曲应力,得到了不同变位系数与齿根弯曲应力的对应关系。分析结果表明,变位系数对于小齿轮齿根弯曲应力的影响较大,而对于大齿轮影响则较小。当变位系数在一定范围内变化时,齿根应力存在一个最小值。  相似文献   

14.
非圆齿轮传动具有广泛的应用场景。针对非圆齿轮传动,采用齿轮啮合原理和材料力学等原理及方法,提出了大重合度非圆齿轮设计方法。探讨了非圆齿轮传动原理和节曲线构建方法,计算了其节曲线曲率半径和重合度方程。建立了不同重合度非圆齿轮轮齿时变啮合刚度与载荷分配率计算模型,推导了不同重合度非圆齿轮齿根弯曲应力方程。探讨了不同结构参数下非圆齿轮副重合度、时变啮合刚度、时变载荷分配率及齿根弯曲应力变化规律,确定了轮齿所受最大载荷位置。开展了不同重合度非圆齿轮齿根弯曲应力仿真分析和实验测量,与理论计算结果进行了对比分析,最大误差分别约为4.8%和5.9%,验证了理论方法的合理性与正确性,为大重合度非圆齿轮传动的工程应用奠定了基础。  相似文献   

15.
采用有限元法研究了齿面摩擦力对滚.磨工艺制造的、齿根部有沉切的齿轮齿根应力的影响。结果表明:摩擦对滚-磨工艺齿轮齿根应力的影响不容忽视,考虑摩擦时,齿根最大拉、压应力随摩擦因数的增大而增大,其中最大拉应力增加的幅度比最大压应力大,当摩擦因数从0增大到0.2时,齿根最大拉应力增加比率为19.08%,晟大压应力增加比率为3.16%;有沉切时齿面摩擦力对齿根弯曲应力的影响比没沉切时要大。  相似文献   

16.
为了全面而深刻地了解齿轮过渡曲线,延长齿轮的工作寿命,从齿轮加工刀具入手对常见齿轮过渡曲线对应的齿轮弯曲应力进行了有限元分析,并将常规齿轮弯曲应力计算中的齿轮单对齿啮合区上界点引入到有限元载荷计算中,以提高有限元计算精度,最后将有限元计算的齿轮最大弯曲应力点与齿轮危险截面弦齿厚进行了对比,以验证结果的正确性。研究表明,应用齿轮过渡曲线设计方法所生成的齿轮,不但使齿形描述方便,而且使弯曲应力的分析更加准确。  相似文献   

17.
根据面齿轮加工基本坐标系和齿轮啮合原理,由刀具齿面方程和坐标转换矩阵建立了面齿轮齿面方程,通过编程计算出面齿轮齿面点,实现了面齿轮三维可视化建模。采用三维有限元分析方法,研究了5种不同载荷条件下面齿轮传动的接触应力、弯曲应力和重合度的变化规律。计算结果表明,随着载荷的增大,面齿轮齿面接触区和重合度增大;在单齿啮合时,面齿轮接触和弯曲应力最大,弯曲应力最大值出现在沿齿高方向靠近中间的位置。本文对面齿轮传动的强度设计具有一定的指导意义。  相似文献   

18.
考虑粗糙表面影响因素的齿轮齿根处应力集中系数计算是齿轮弯曲疲劳寿命精准预估的难题,以磨削喷丸后的直齿轮为研究对象,研究粗糙表面下的齿根应力与应力集中计算问题。采用白光干涉仪Wyko NT9100对磨削喷丸齿根粗糙表面进行测量,得到粗糙表面形貌数据,基于空间坐标变换原理,使用Python对有限元软件进行二次开发,通过调整齿根细化网格节点坐标实现了齿根表面粗糙形貌的添加工作,建立了齿根过渡曲面三维粗糙表面有限元模型并进行仿真分析。通过数值计算得到三维粗糙表面参数下的齿根应力分布与应力集中系数,对粗糙表面参数与应力集中系数的关联规律进行非线性回归分析,建立粗糙表面参数与应力集中系数的关联规律。结果表明,粗糙表面参数SaSvS10z拟合应力集中系数得到拟合公式的相关系数分别为0.799,0.784,0.914,十点区域高度参数S10z能较好地表征齿根表面的应力集中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号