首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 859 毫秒
1.
[目的] 优化影响黄芩素聚乳酸/羟基乙酸共聚物(PLGA)纳米粒成型工艺参数,并评价优化工艺后所制纳米粒的制剂学性质。[方法] 采用乳化-溶剂挥发法制备黄芩素PLGA纳米粒,以粒径、包封率为评价指标,单因素实验考察了聚乙烯醇(PVA)浓度、PLGA型号、PLGA分子量、PLGA浓度、水相与有机相体积比、丙酮与无水乙醇体积比、药物与PLGA的比例共7个参数对纳米粒成型工艺的作用规律。[结果] 优化处方工艺制备的纳米粒包封率为(95.03±1.33)%、平均粒径为(126.80±4.50) nm、Zeta电位(-21.30±0.23) mV.[结论] 乳化-溶剂挥发法制备的黄芩素PLGA纳米粒圆整,粒径均一。  相似文献   

2.
[目的] 制备丹参酮I固体脂质纳米粒(TSI-SLN)并对其性质质量进行考察。[方法] TSI-SLN的制备方法选用乳化固化法,并以制剂的粒径、电位和包封率为考察指标。对TSI-SLN冻干品进行差式扫描量热法(DSC)检测。[结果] TSI-SLN的平均粒径为(128±2.00)nm,电位为(-9.35±0.12)mV;TSI的包封率为(74.03±1.32)%。DSC结果表明丹参酮I包裹在纳米粒中。[结论] 采用乳化固化法安全可靠,简单易行;该方法下制备的SLN具有较小的粒径和较高的包封率;且理化性质稳定,为后续实验提供了依据。  相似文献   

3.
[目的] 探索不同辅料对于松果菊苷固体脂质纳米粒(SLN)理化性质的影响,从而对水溶性药物单体固体脂质纳米粒的处方研究做出一点提示。[方法] 采用单一变量法摸索松果菊苷SLN中Myrj52、山嵛酸甘油酯(Compritol 888 ATO)、单硬脂酸甘油酯、大豆卵磷脂等辅料对纳米粒理化性质的影响。[结果] 随Myrj52量的增加,纳米粒的粒径减小,Zeta电位增大,包封率增大。随Compritol 888 ATO量的增加,包封率降低,粒径稍有增大,Zeta电位减小。随单硬脂酸甘油酯量的增加,粒径明显增大,包封率略有减小,Zeta电位减小。随卵磷脂量的增加,粒径明显增大,电位明显减小。包封率降低。[结论] 各种辅料单独对松果菊苷SLN的理化性质都有较大影响,此研究可以为相似性质的药物SLN的处方筛选提供启示。  相似文献   

4.
[目的] 制备丹参酮Ⅰ脂质体,并对其包封率、粒径、电位等理化性质进行考察。[方法] 采用薄膜分散法丹参酮Ⅰ脂质体,用琼脂糖凝胶柱色谱法和紫外分光光度法测定包封率,用差示扫描量热法检测丹参酮Ⅰ脂质体各组成物质的相变过程。[结果] 丹参酮Ⅰ在1.004~6.024 μg/mL范围内线性关系良好(r=0.999 9),琼脂糖凝胶柱色谱法能有效分离脂质体和游离药物,加样回收率为(98.23±0.02)%,平均包封率为(92.56±0.39)%,粒径为(90.64±1.21) nm,电位为(-35.37±0.84) mV.[结论] 薄膜分散法可用于制备丹参酮Ⅰ脂质体,制备的丹参酮Ⅰ脂质体的包封率高,粒径均一,电位稳定,药物含量和包封率测定方法准确可靠,专属性强。  相似文献   

5.
[目的] 研究麦角甾苷眼用固体脂质纳米粒的制备方法及其体外释放的情况。[方法] 采用乳化蒸发-低温固化法制备麦角甾苷固体脂质纳米粒,超滤离心法测其包封率,并对其粒径、电位、进行进一步考察,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中麦角甾苷的体外释放行为。[结果] 麦角甾苷固体脂质纳米粒的平均粒径为85.56 nm,Zeta 电位约为-20.97 mV,药物平均包封率为88.31 %,DSC 表明其理化性质稳定可靠,体外12 h 累计释放率62.46 %。[结论] 制备的麦角甾苷固体脂质纳米粒包封率较高,粒径小且分布均匀,有良好的缓释作用。  相似文献   

6.
[目的]制备抗肿瘤药物藤黄酸(GA)纳米结构脂质载体(GA-NLC),考察其理化性质,并对其抗肿瘤作用进行初步评价。[方法]采用乳化-固化法制备,以粒径、Zeta电位、包封率为评价指标考察其理化性质,并用差示扫描量热法(DSC)进行验证。采用CCK-8法测定GA-NLC对人乳腺癌细胞MDA-MB-231的抑制作用。[结果]制备的GA-NLC粒径分布在20 nm左右,Zeta电位为-(5.86±0.64)mV、包封率为(99.46±0.23)%。DSC结果表明GA以无定型的形式存在于藤黄酸纳米结构脂质载体中。[结论]通过乳化-固化法制备出的GA-NLC,粒径较小、分布均匀,包封率高,与GA溶液相比,GA-NLC具有更强的抗肿瘤活性。  相似文献   

7.
[目的] 制备一种有长循环效果的聚乙二醇(PEG)修饰的紫草素纳米结构脂质载体,并对其进行理化表征和体外抗肿瘤效果评价。[方法] 采用乳化蒸发-低温固化法制备紫草素纳米结构脂质载体,通过超速离心法检测包封率;通过粒径、多分散指数(PDI)、Zeta电位、透射电镜、差示扫描量热、X射线等对制剂进行表征。采用CCK-8法考察乳腺癌MCF-7细胞的活性,以香豆素-6和Hoechst 33342为荧光探针定量考察细胞摄取行为。[结果] PEG修饰的紫草素纳米结构脂质载体粒径为(19.68±1.25)nm,多分散指数为(0.28±0.68),Zeta电位为[-(20.27±1.27)]mV。平均包封率为98%,制剂外观圆整,分布均匀。紫草素以无定型物包载于制剂中。紫草素的抗肿瘤作用呈现浓度依赖性,中、高剂量的PEG修饰制剂组抗肿瘤活性明显高于未修饰制剂组和溶液组。细胞摄取实验结果与细胞毒性实验结果一致。[结论] 实验制备的PEG修饰的紫草素纳米结构脂质载体包封率较高,粒径小,体系稳定,具有良好的体外抗肿瘤和细胞摄取效果。  相似文献   

8.
[目的]制备川芎嗪固体脂质纳米粒,并对其载药量和包封率进行考察。[方法]采用薄膜超声分散法制备,并以包封率为指标采用正交设计法优化川芎嗪固体脂质纳米粒的制备工艺。[结论]所得川芎嗪固体脂质纳米粒的最佳制备处方是川芎嗪30mg,卵磷脂300mg,硬脂酸300mg,30g/L的甘露醇15mL。[结论]该处方可用于川芎嗪固体脂质纳米粒的制备,工艺简单、可行。  相似文献   

9.
目的 为了提高胸腺五肽口服的稳定性及生物利用度,制备胸腺五肽pH-敏感壳聚糖纳米粒并考察其理化性质、体外释放及生物活性.方法 采用离子胶凝法制备胸腺五肽壳聚糖纳米粒并用Eudragit S100包衣制备pH-敏感纳米粒;透射电镜和环境扫描电镜观察纳米粒形态;粒度及表面电位分析仪测量纳米粒的粒径及Zeta电位;超速离心法测定载药纳米粒的包封率;动态透析法研究载药纳米粒的体外释放特性;模拟人工消化液考察纳米粒中胸腺五肽的生物稳定性;淋巴细胞增殖反应评价制剂的生物活性.结果 pH-敏感胸腺五肽壳聚糖纳米粒的平均粒径为(175.6±17)nm,Zeta电位为(28.44±0.5)mV,包封率为(76.70±2.6)%.胸腺五肽pH-敏感壳聚糖纳米粒具有良好的pH依赖性:在0.1 mol·L-1 HCl溶液中累积释放24.65%,在pH 5.0 PBS溶液中累积释放41.01%,在pH 7.4 PBS溶液中累积释放81.44%.pH敏感壳聚糖纳米粒制剂中的胸腺五肽在人工胃液中稳定,在人工肠液中半衰期为15 min.淋巴细胞体外转化实验表明,胸腺五肽pH-敏感壳聚糖纳米粒保留了TP5的生物活性并且具有浓度依赖性.结论 pH-敏感壳聚糖纳米粒可能是口服胸腺五肽的良好载体.  相似文献   

10.
[目的]考察MDCK-MDR1细胞对立方液晶纳米粒的摄取及摄取机制。[方法]以钙黄绿素为标准荧光物质制备液晶纳米粒。采用流式细胞仪检测不同时间点MDCK-MDR1细胞内荧光强度,比较细胞对钙黄绿素、钙黄绿素液晶纳米粒摄取的差异;采用不同抑制剂(非律平、细胞松弛素D、氯丙嗪、2-D-去氧葡萄糖)与钙黄绿素液晶纳米粒共同孵育后,流式细胞仪测定胞内荧光强度,判断MDCK-MDR1细胞摄取液晶纳米粒的通路。[结果]摄取2 h内,立方液晶纳米粒不仅可以增加MDCK-MDR1细胞对钙黄绿素的摄取也可改变细胞的摄取行为。经氯丙嗪、2-D-去氧葡萄糖孵育的细胞胞内荧光含量低,差异有统计学意义(P<0.05)。[结论]立方液晶纳米粒可增加MDCK-MDR1对钙黄绿素的摄取,摄取途径为能量依赖网格蛋白介导的主动内吞。  相似文献   

11.
[目的]考察溶解介质对黄芩苷脂质体主要特性的影响。[方法]测定黄芩苷在水相[水、磷酸盐缓冲液(PBS)]和有机相(95%乙醇、无水乙醇、甲醇中)中的溶解度;分别将黄芩苷全部溶解在水相、有机相及在两相中以一定比例存在,采用薄膜超声法制备黄芩苷脂质体,测定粒径、电位,并用高效液相色谱法测定包封率和渗漏率。[结果]黄芩苷在水、p H6.8 PBS溶液、95%乙醇、无水乙醇、甲醇中的溶解度分别为0.1、10.58、0.45、0.71、4.36 g/L。以p H6.8 PBS溶液、甲醇以及甲醇和p H6.8 PBS溶液为溶解介质制备的脂质体粒径分别为(179.4±15.10)、(145.31±7.35)、(133.84±4.67)nm;Zeta表面电位(-8.93±0.40)、(-8.69±1.08)、(-8.64±1.13)m V;包封率为(82.64±0.02)%、(48.87±0.01)%、(55.53±0.07)%;渗漏率为(9.30±0.02)%、(49.72±0.04)%、(55.41±0.01)%。[结论]以p H6.8 PBS溶液为溶解介质所得脂质体粒径均匀、包封率高、渗漏量少,稳定性好。  相似文献   

12.
[目的]以单硬脂酸甘油酯为载体材料制备姜黄素固体脂质纳米粒及其体外释放行为的研究。[方法]采用乳化蒸发-低温固化法制备姜黄素固体脂质纳米粒,高速离心法测其包封率,激光粒径仪测定其粒径、电位,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中姜黄素的体外释放行为。[结果]姜黄素固体脂质纳米粒的平均粒径为(89.24±2.06)nm,Zeta电位为(-18.77±1.27)m V,药物平均包封率为(89.55±1.84)%,DSC结果表明其理化性质稳定可靠,体外12 h累计释放率为(43.12±1.02)%。[结论]制备的姜黄素固体脂质纳米粒粒径小且分布均匀,具有良好的缓释作用。  相似文献   

13.
[目的]制备黄芩素聚(乳酸-羟基乙酸)共聚物(PLGA)纳米粒,并对其理化性质、体外释药以及体外角膜细胞相容性进行研究。[方法]使用乳化溶剂挥发法制备黄芩素PLGA纳米粒,评价其性质和体外缓释效果,主要包括:纳米粒粒径,纳米粒包封率,药物载药量和体外缓释曲线等。采用细胞增殖实验评价黄芩素PLGA纳米粒的细胞毒性。[结果]黄芩素PLGA纳米粒粒径(92.5±2.35)nm、Zeta电位(-21.1±2.5)mV、包封率(92.5±2.35)%、载药量(23.12±1.45)%。体外缓释实验提示:突释阶段黄芩素释放率在1 d内达(8.37±0.31)%,缓释阶段纳米粒可稳定释放,在10 d时释放达(51.30±0.50)%,细胞增殖实验提示黄芩素PLGA纳米粒对细胞体外生长无不良影响,细胞相容性好。[结论]采用乳化溶剂挥发法制备的黄芩素PLGA纳米粒具有良好的缓释效应和良好的细胞相容性。  相似文献   

14.
[目的]构建叶酸(FA)修饰的载新藤黄酸纳米结构脂质载体(FA-GNA-NLC),提高新藤黄酸(GNA)的生物利用度,增强其在肿瘤部位的蓄积,降低全身毒副作用,并对该制剂进行理化表征和体内外药效学评价。[方法]通过乳化蒸发-低温固化法构建包载GNA的纳米结构脂质载体(GNA-NLC),通过聚乙二醇(PEG)链将FA连接到NLC表面,对制剂的粒径、Zeta电位和外观形貌进行初步表征。以小鼠乳腺癌4T1细胞和人乳腺癌MDA-MB-231细胞为体外模型评价其对FA-NLC的摄取能力,以4T1细胞为体外细胞模型评价FA-GNA-NLC对肿瘤细胞的增殖抑制作用。构建乳腺癌小鼠模型,进行组织分布和体内抗肿瘤药效实验。[结果]制备得到形貌圆整、粒度均一、粒径为(16.01±0.03)nm、电位为(-6.8±0.59)mV、包封率为99%的FA-GNA-NLC。细胞毒性实验及体内抗肿瘤实验表明FA-GNA-NLC具有良好的抗肿瘤效果,细胞摄取实验及组织分布实验表明FA-NLC具有更好的靶向性,增强了药物在靶细胞、靶组织的蓄积。[结论]构建的FA-GNA-NLC增强了GNA的抗肿瘤活性,提高了GNA在肿...  相似文献   

15.
盐酸小檗碱眼用固体脂质纳米粒的研究*   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]制备盐酸小檗碱固体脂质纳米粒。[方法]采用乳化蒸发低温固化法制备盐酸小檗碱纳米粒,采用离体角膜透过实验对其体外进行评价。[结果]制备的纳米粒的包封率为51.1%,平均粒径为(19±2)nm,zeta电位为-11.5 mV,表观渗透系数为(1.46±0.45)×10-6cm/s,与对照组相比增加了16%,差异有统计学意义(P<0.05)。[结论]所用制备工艺简单,可用于制备盐酸小檗碱固体脂质纳米粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号