首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
神经元的突触可塑性与学习和记忆   总被引:7,自引:0,他引:7  
大量研究表明,神经元的突触可塑性包括功能可塑性和结构可塑性,与学习和记忆密切相关.最近,在经过训练的动物海马区,记录到了学习诱导的长时程增强(long term potentiation,LTP),如果用激酶抑制剂阻断晚期LTP,就会使大鼠丧失训练形成的记忆.这些结果指出,LTP可能是形成记忆的分子基础.因此,进一步研究哺乳动物脑内突触可塑性的分子机制,对揭示学习和记忆的神经基础有重要意义.此外,在精神迟滞性疾病和神经退行性疾病患者脑内记录到异常的LTP,并发现神经元的树突棘数量减少,形态上产生畸变或萎缩,同时发现,产生突变的基因大多编码调节突触可塑性的信号通路蛋白,故突触可塑性研究也将促进精神和神经疾病的预防和治疗.综述了突触可塑性研究的最新进展,并展望了其发展前景.  相似文献   

2.
Maren S 《Neuron》2005,47(6):783-786
Do associative learning and synaptic long-term potentiation (LTP) depend on the same cellular mechanisms? Recent work in the amygdala reveals that LTP and Pavlovian fear conditioning induce similar changes in postsynaptic AMPA-type glutamate receptors and that occluding these changes by viral-mediated overexpression of a dominant-negative GluR1 construct attenuates both LTP and fear memory in rats. Novel forms of presynaptic plasticity in the lateral nucleus may also contribute to fear memory formation, bolstering the connection between synaptic plasticity mechanisms and associative learning and memory.  相似文献   

3.
The plasticity of the central nervous system helps form the basis for the neurobiology of learning and memory. Long-term potentiation (LTP) is the main form of synaptic plasticity, reflecting the activity level of the synaptic information storage process, and provides a good model to study the underlying mechanisms of learning and memory. The glutamate receptor-mediated signal pathway plays a key role in the induction and maintenance of LTP, and hence the regulation of learning and memory. The progress in the understanding of the glutamate receptors and related signal transduction systems in learning and memory research are reviewed in this article.  相似文献   

4.
Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.  相似文献   

5.
The hypothesis that synaptic plasticity is a critical component of the neural mechanisms underlying learning and memory is now widely accepted. In this article, we begin by outlining four criteria for evaluating the 'synaptic plasticity and memory (SPM)' hypothesis. We then attempt to lay the foundations for a specific neurobiological theory of hippocampal (HPC) function in which activity-dependent synaptic plasticity, such as long-term potentiation (LTP), plays a key part in the forms of memory mediated by this brain structure. HPC memory can, like other forms of memory, be divided into four processes: encoding, storage, consolidation and retrieval. We argue that synaptic plasticity is critical for the encoding and intermediate storage of memory traces that are automatically recorded in the hippocampus. These traces decay, but are sometimes retained by a process of cellular consolidation. However, we also argue that HPC synaptic plasticity is not involved in memory retrieval, and is unlikely to be involved in systems-level consolidation that depends on HPC-neocortical interactions, although neocortical synaptic plasticity does play a part. The information that has emerged from the worldwide focus on the mechanisms of induction and expression of plasticity at individual synapses has been very valuable in functional studies. Progress towards a comprehensive understanding of memory processing will also depend on the analysis of these synaptic changes within the context of a wider range of systems-level and cellular mechanisms of neuronal transmission and plasticity.  相似文献   

6.
Alzheimer’s disease (AD) is characterized by profound synapse loss and impairments of learning and memory. Magnesium affects many biochemical mechanisms that are vital for neuronal properties and synaptic plasticity. Recent studies have demonstrated that the serum and brain magnesium levels are decreased in AD patients; however, the exact role of magnesium in AD pathogenesis remains unclear. Here, we found that the intraperitoneal administration of magnesium sulfate increased the brain magnesium levels and protected learning and memory capacities in streptozotocin-induced sporadic AD model rats. We also found that magnesium sulfate reversed impairments in long-term potentiation (LTP), dendritic abnormalities, and the impaired recruitment of synaptic proteins. Magnesium sulfate treatment also decreased tau hyperphosphorylation by increasing the inhibitory phosphorylation of GSK-3β at serine 9, thereby increasing the activity of Akt at Ser473 and PI3K at Tyr458/199, and improving insulin sensitivity. We conclude that magnesium treatment protects cognitive function and synaptic plasticity by inhibiting GSK-3β in sporadic AD model rats, which suggests a potential role for magnesium in AD therapy.  相似文献   

7.
Age-associated deficits in learning and memory are closely correlated with impairments of synaptic plasticity. Analysis of N-methyl-D-aspartate receptor (NMDAr)-dependent long-term potentiation (LTP) in CA1 hippocampal slices indicates that the glial-derived neuromodulator D-serine is required for the induction of synaptic plasticity. During aging, the content of D-serine and the expression of its synthesizing enzyme serine racemase are significantly decreased in the hippocampus. Impaired LTP and NMDAr-mediated synaptic potentials in old rats are rescued by exogenous D-serine. These results highlight the critical role of glial cells and presumably astrocytes, through the availability of D-serine, in the deficits of synaptic mechanisms of learning and memory that occur in the course of aging.  相似文献   

8.
Do stress and long-term potentiation share the same molecular mechanisms?   总被引:2,自引:0,他引:2  
Stress is a biological, significant factor shown to influence hippocampal synaptic plasticity and cognitive functions. Although numerous studies have reported that stress produces a suppression in long-term potentiation (LTP; a putative synaptic mechanism underlying learning and memory), little is known about the mechanism by which this occurs. Because the effects of stress on LTP and its converse process, long-term depression (LTD), parallel the changes in synapticity that occur following the establishment of LTP with tetanic stimulation (i.e., occluding LTP and enhancing LTD induction), it has been proposed that stress affects subsequent hippocampal plasticity by sharing the same molecular machinery required to support LTP. This article summarizes recent findings from ours and other laboratories to assess this view and discusses relevant hypotheses in the study of stress-related modifications of synaptic plasticity.  相似文献   

9.
Zhuo M 《Molecules and cells》2007,23(3):259-271
Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/ pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.  相似文献   

10.
Zhang JF  Yang D  Qi JS 《生理学报》2010,62(6):479-488
The accumulation of amyloid β-protein (Aβ) plaques is identified as a major pathological feature of Alzheimer's disease (AD). Recent studies show that soluble species of Aβ are involved in the early memory dysfunction long before neurodegenerative changes. However, the mechanism underlying the neurotoxicity of soluble Aβ is still unclear. Long-term potentiation (LTP) has been thought as an important cellular model of synaptic plasticity for many years. The studies on the hippocampal LTP and Aβ, especially those using AD transgenic models, provided more evidence for the Aβ-induced dysfunction of learning and memory. Based on the recent researches on AD, this article reviewed the effects of Aβ, especially soluble Aβ and its active fragments, on the hippocampal LTP. The possible mechanisms by which Aβ impairs hippocampal LTP are also discussed.  相似文献   

11.
It is well documented that the hormone leptin plays a pivotal role in regulating food intake and body weight via its hypothalamic actions. However, leptin receptors are expressed throughout the brain with high levels found in the hippocampus. Evidence is accumulating that leptin has widespread actions on CNS function and in particular learning and memory. Recent studies have demonstrated that leptin-deficient or-insensitive rodents have impairments in hippocampal synaptic plasticity and in spatial memory tasks performed in the Morris water maze. Moreover, direct administration of leptin into the brain facilitates hippocampal long-term potentiation (LTP), and improves memory performance in mice. There is also evidence that, at the cellular level, leptin has the capacity to convert hippocampal short-term potentiation (STP) into LTP, via enhancing NMDA receptor function. Recent data indicates that leptin can also induce a novel form of NMDA receptor-dependent hippocampal long-term depression. Here, we review the evidence implicating a key role for the hormone leptin in modulating hippocampal synaptic plasticity and discuss the role of lipid signaling cascades in this process.  相似文献   

12.
Ageing is associated with learning and memory impairments. Data are reviewed that suggest that age-related impairments of hippocampal-dependent forms of memory, may be caused, in part, by altered synaptic plasticity mechanisms in the hippocampus, including long-term potentiation (LTP). To the extent that the mechanisms responsible for LTP can be understood, it may be possible to develop therapeutic approaches to alleviate memory decline in normal ageing.  相似文献   

13.
Cellular and molecular mechanisms of memory: the LTP connection.   总被引:9,自引:0,他引:9  
Studies of the cellular and molecular mechanisms of memory formation have focused on the role of long-lasting forms of synaptic plasticity such as long-term potentiation (LTP). A combination of genetic, electrophysiological and behavioral techniques have been used to examine the possibility that LTP is a cellular mechanism of memory storage in the mammalian brain. Although a definitive answer remains elusive, it is clear that in many cases manipulations that alter LTP alter memory, and training regimens that produce memory can produce LTP-like potentiation of synaptic transmission.  相似文献   

14.
Long-term, activity-driven synaptic plasticity allows neuronal networks to constantly and durably adjust synaptic gains between synaptic partners. These processes have been proposed to serve as a substrate for learning and memory. Long-term synaptic potentiation (LTP) has been observed at many central excitatory synapses and perhaps most extensively studied at Schaffer collaterals synapses onto hippocampal CA1 neurons. Multiple contradictory models were proposed to account for this form of LTP. However, recent evidence suggests that some synapses are initially devoid of functional AMPA receptors which can be incorporated during LTP. This new model appears to account for most, but not all, properties of this form of plasticity. Indeed, several mechanisms seem to act in parallel to specifically enhance AMPA-receptor mediated synaptic transmission.  相似文献   

15.
Long-term potentiation (LTP) is a cellular model for learning and memory and believed to be critical for plastic changes in the brain. Depending on the central nervous system region, LTP has been proposed to contribute to many key physiological functions and pathological conditions, such as learning/memory, chronic pain, and drug addiction. While the induction of LTP in general requires activation of postsynaptic glutamate receptors, the expression of LTP can be mediated by postsynaptic mechanisms and/or presynaptic enhancement of glutamate release. In this review, we will evaluate recent progress made in the mechanisms of LTP in the anterior cingulate cortex (ACC) and explore its functional significance in synaptic changes after peripheral injury. Recent findings suggest that while ACC LTP in brain slice preparations is postsynaptically induced and expressed, injury triggered synaptic potentiation in the ACC contains both presynaptic enhancement of glutamate release and postsynaptic potentiation of AMPA receptor-mediated responses. Understanding presynaptic and postsynaptic mechanisms for ACC potentiation may help us to treat chronic pain in near future.  相似文献   

16.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

17.
A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice). Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP) that was independent of NMDARs and mediated by GluR2-lacking Ca2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.  相似文献   

18.
Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Realtime PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.  相似文献   

19.
Allocentric spatial learning can sometimes occur in one trial. The incorporation of information into a spatial representation may, therefore, obey a one-trial correlational learning rule rather than a multi-trial error-correcting rule. It has been suggested that physiological implementation of such a rule could be mediated by N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in the hippocampus, as its induction obeys a correlational type of synaptic learning rule. Support for this idea came originally from the finding that intracerebral infusion of the NMDA antagonist AP5 impairs spatial learning, but studies summarized in the first part of this paper have called it into question. First, rats previously given experience of spatial learning in a watermaze can learn a new spatial reference memory task at a normal rate despite an appreciable NMDA receptor blockade. Second, the classical phenomenon of ''blocking'' occurs in spatial learning. The latter finding implies that spatial learning can also be sensitive to an animal''s expectations about reward and so depend on more than the detection of simple spatial correlations. In this paper a new hypothesis is proposed about the function of hippocampal LTP. This hypothesis retains the idea that LTP subserves rapid one-trial memory, but abandons the notion that it serves any specific role in the geometric aspects of spatial learning. It is suggested that LTP participates in the automatic recording of attended experience'': a subsystem of episodic memory in which events are temporarily remembered in association with the contexts in which they occur. An automatic correlational form of synaptic plasticity is ideally suited to the online registration of context event associations. In support, it is reported that the ability of rats to remember the most recent place they have visited in a familiar environment is exquisitely sensitive to AP5 in a delay-dependent manner. Moreover, new studies of the lasting persistence of NMDA-dependent LTP, known to require protein synthesis, point to intracellular mechanisms that enable transient synaptic changes to be stabilized if they occur in close temporal proximity to important events. This new property of hippocampal LTP is a desirable characteristic of an event memory system.  相似文献   

20.
Long-term potentiation (LTP) is a form of synaptic plasticity thought to be involved in learning and memory. Althrough extensively studied, mainly in the CA1 region of the hippocampus, the mechanisms underlying the induction and expression of LTP are poorly elucidated. This is probably due to the fact that LTP is not a unique process and indeed recent studies have shown that several forms of LTP could be generated depending on the experimental conditions. Furthermore, LTP is generally associated with a long-lasting increase of the synaptic efficacy of AMPA receptors but an increasing number of data also suggested that NMDA receptors could be potentiated as well. NMDA receptor responses are modulated by a large number of extracellular and intracellular events, providing additional possibilities for the generation of LTP. The role of these different modulatory sites of the NMDA receptor and their relation with LTP are reviewed with a particular attention to the redox site which seems to be a selective target to distinguish between AMPA and NMDA-LTP. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号