首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loop heat pipes often experience start-up problems especially under low thermal loads. A bypass line was installed between the evaporator and the liquid reservoir to alleviate the difficulties associated with start-up of a loop heat pipe with flat evaporator. The evaporator and condenser had dimensions of 40 mm (W) by 50 mm (L). The wall and tube materials were stainless steel and the working fluid was methanol. Axial grooves were provided in the flat evaporator to serve as vapor passages. The inner diameters of liquid and vapor transport lines were 2 mm and 4 mm, respectively, and the length of the two lines was 0.5 m each. The thermal load range was up to 130 W for horizontal alignment with the condenser temperature of 10°C. The experimental results showed that the minimum thermal load for start-up was lowered by 37% when the bypass line was employed. This paper was recommended for publication in revised form by Associate Editor Dae Hee Lee Joon Hong Boo received his B.S. degree in Mechanical Engineering from Seoul National University in 1978. He then received his M.S.M.E. and Ph.D. degrees from Georgia Institute of Technology in 1984 and 1989, respectively. Dr. Boo is currently a Professor in the School of Aerospace and Mechanical Engineering at Korea Aerospace University, where he joined in 1989. His research interests include heat transfer, heat pipes, and energy systems. He conducted joint research with Texas A&M University and Waseda University in 1994 and 2008, respectively, as Visiting Professor. Dr. Boo is an active member of the International Heat Pipe Conference Committee. Eui Guk Jung received his B.S. and M.S. degrees in Aerospace and Mechanical Engineering from Korea Aerospace University, in 2002 and 2004, respectively. He is currently a Ph.D. candidate in the Graduate School at Korea Aerospace University. His research interests include applications of heat pipes and loop heat pipes.  相似文献   

2.
The output power efficiency of the fuel cell system mainly depends on the required current, stack temperature, air excess ratio, hydrogen excess ratio, and inlet air humidity. Therefore, the operating conditions should be optimized to get maximum output power efficiency. In this paper, a dynamic model for the fuel cell stack was developed, which is comprised of a mass flow model, a gas diffusion layer model, a membrane hydration, and a stack voltage model. Experiments have been performed to calibrate the dynamic Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack model. To achieve the maximum output power and the minimum use of hydrogen in a certain power condition, optimization was carried out using Response Surface Methodology (RSM) based on the proposed PEMFC stack model. Using the developed method, optimal operating conditions can be effectively selected in order to obtain minimum hydrogen consumption. This paper was recommended for publication in revised form by Associate Editor Tong Seop Kim Dong-Ji Xuan received his B.S. degree in Mechanical Engineering from Harbin Engineering University, China in 2000. He then received his M.S. degree in Mechanical Engineering from Chonnam National University, South Korea in 2006. Currently, he is a Ph.D. candidate of the Department of Mechanical Engineering, Chonnam National University, South Korea. His research interests include control and optimization of PEM fuel cell system, dynamics and control, and mechatronics. Zhen-Zhe Li received his B.S. degree in Mechanical Engineering from Yanbian University, China in 2002. He then received his M.S. degree in Aerospace Engineering from Konkuk University, South Korea in 2005 and his Ph.D. degree in Mechanical Engineering from Chonnam National University, South Korea in 2009. Dr. Li is currently a Researcher of the Department of Mechanical Engineering in Chonnam National University, South Korea. Dr. Li’s research interests include applied heat transfer, fluid mechanics, and optimal design of thermal and fluid systems. Jin-Wan Kim received his B.S. degree in Aerospace Engineering from Chosun University, South Korea in 1990. He then received his M.S. degree in Aerospace and Mechanical Engineering from Korea Aerospace University, South Korea in 2003 and his Ph.D degree in Mechanical Engineering from Chonnam National University, South Korea in 2008. He is currently a Post Doctor of the Department of Mechanical Engineering in Chonnam National University, South Korea. His research interests include control of hydraulic systems, dynamics and control, and mechatronics. Young-Bae Kim received his B.S. degree in Mechanical Design from Seoul National University, South Korea in 1980. He then received his M.S. degree in Mechanical Engineering from the Korean Advanced Institute of Science and Technology (KAIST), South Korea in 1982 and his Ph.D. degree in Mechanical Engineering from Texas A&M University, USA in 1990. Dr. Kim is currently a Professor of the School of Mechanical and Systems Engineering in Chonnam National University, South Korea. Dr. Kim’s research interests include mechatronics, dynamics and control, and fuel cell hybrid electric vehicle (FCHEV) systems.  相似文献   

3.
Numerical simulations are performed to develop a new heat transfer coefficient correlation applicable to the gas cooler design of a trans-critical carbon dioxide air-conditioner. Thermodynamic and transport properties of the supercritical gas cooling process change dramatically and significantly vary heat transfer coefficients to be much different from those of single or two phase flows. In the present study, the elliptic blending second moment turbulent closure precisely reflecting the effects of these thermo-physical property variations on the turbulent heat transfer is employed to model the Reynolds stresses and turbulent heat fluxes in the momentum and energy equations. Computational results related to the development of turbulent heat transfer during in-duct cooling of supercritical carbon dioxide were used to establish a new heat transfer coefficient correlation that would be widely applicable to a gas cooler design involving turbulent heat transfer of supercritical carbon dioxide in square cross-sectional duct flows. This paper was recommended for publication in revised form by Associate Editor Kyung-Soo Yang Seong Ho, Han received a B.S. degree in Mechanical Engineering from Kookmin University in 2003. He then went on to receive his M.S. degree from Korea University in 2005. He is currently in a Ph. D. course at Mechanical Engineering at Korea University in Seoul, Korea. His research interests are in the area of hydrogen energy, polymer electrolyte membrane fuel cell.  相似文献   

4.
Thermoforming is one of the most versatile and economical processes available for polymer products, but cycle time and production cost must be continuously reduced in order to improve the competitive power of products. In this study, water spray cooling was simulated to apply to a cooling system instead of compressed air cooling in order to shorten the cycle time and reduce the cost of compressed air used in the cooling process. At first, cooling time using compressed air was predicted in order to check the state of mass production. In the following step, the ratio of removed energy by air cooling or water spray cooling among the total removed energy was found by using 1-D analysis code of the cooling system under the condition of checking the possibility of conversion from 2-D to 1-D problem. The analysis results using water spray cooling show that cycle time can be reduced because of high cooling efficiency of water spray, and cost of production caused by using compressed air can be reduced by decreasing the amount of the used compressed air. The 1-D analysis code can be widely used in the design of a thermoforming cooling system, and parameters of the thermoforming process can be modified based on the recommended data suitable for a cooling system of thermoforming. This paper was recommended for publication in revised form by Associate Editor Dongsik Kim Zhen-Zhe Li received his B.S. degree in Mechanical Engineering from Yanbian University, China, in 2002. He then received his M.S. degree in Aerospace Engineering from Konkuk University, South Korea, in 2005. He then received his Ph.D. degree in Mechanical Engineering from Chonnam National University, South Korea, in 2009. Dr. Li is currently a Researcher of the Department of Mechanical Engineering, Chonnam National University, South Korea. Dr. Li’s research interests include applied heat transfer, fluid mechanics and optimal design of thermal and fluid systems. Kwang-Su Heo received his B.S. degree in Mechanical Engineering from Chonnam National University, South Korea, in 1998. He then received his M.S. and Ph.D. degrees in Mechanical Engineering from Chonnam National University, South Korea, in 2003 and 2008, respectively. Dr. Heo is currently a Post-doctorial Researcher of the Department of Mechanical Engineering, KAIST(Korean Advanced Institute of Science and Technology), South Korea. Dr. Heo’s research interests include applied heat transfer, fluid mechanics and thermal analysis of superconductor. Dong-Ji Xuan received his B.S. degree in Mechanical Engineering from Harbin Engineering University, China, in 2000. He then received his M.S. degree in Mechanical Engineering from Chonnam National University, South Korea, in 2006. He is currently a Ph.D. candidate of the Department of Mechanical Engineering, Chonnam National University, South Korea. His research interests include control & optimization of PEM fuel cell system, dynamics & control, mechatronics. Seoung-Yun Seol received his B.S. degree in Mechanical Design from Seoul National University, South Korea, in 1983. He then received his M.S. degree in Mechanical Engineering from KAIST(Korean Advanced Institute of Science and Technology), South Korea, in 1985. He then received his Ph.D. degree in Mechanical Engineering from Texas Tech University, USA, in 1993. Dr. Seol is currently a Professor of the School of Mechanical and Systems Engineering, Chonnam National University, South Korea. Dr. Seol’s research interests include applied heat transfer, fluid mechanics and thermal analysis of superconductor.  相似文献   

5.
Three types of flow passage structure of a total heat exchanger (perforated type, slit type, and embossed and perforated type) are studied to enhance the heat exchange performance of a heat recovery ventilation system (total heat exchanger). The perforated type has four punched rows of 6mm holes in the flow passage channel, and the slit type has six processed rows of 40mm length. The embossed and perforated type has holes of about 1mm diameter and protrusions of about 0.2mm height on all surfaces. The heat exchange efficiency of the modified total heat exchanger was compared to that of a general total heat exchanger with a smooth surface. The Korean Standard (KS) heat recovery ventilator test condition was applied for tests. In the case of cooling operation based on a typical Reynolds number of 140 (typical air flow rate of 100 m3/hr), the perforated type, slit type, and embossed and perforated type showed temperature efficiency improvement of 1.2%, 2.5%, and 5.0%; latent efficiency improvement of 18.0%, 32.3%, and 24.5%; and enthalpy efficiency improvement of 7.9%, 11.5%, and 11.2%, respectively. The corresponding improvements of heating operation were 3.0%, 3.4%, and 4.0%; 5.0%, 6.6%, and 18.7%; 3.2%, 4.3%, and 7.7%, respectively. On the other hand, the air pressure drop throughout the modified flow passage of the total heat exchanger increased by up to 1.7% at the typical Reynolds number of 140, from the air pressure drop of the regular total heat exchanger. This paper was recommended for publication in revised form by Associate Editor Dae Hee Lee Kyungmin Kwak received his B.S., M.S. and Ph.D. degrees in Mechanical Engineering from Yeungnam University, Korea, in 1993, 1995 and 1999, respectively. Dr. Kwak is currently a Researcher at the Automotive RIC at Kyungil University, Korea. His research interests include heat transfer, refrigeration and air control. Cheolho Bai received his B.S. and M.S. degrees in Mechanical Engineering from Seoul Na-tional University, Korea, in 1984 and 1986, respectively. He then received his Ph.D. from UCLA, USA, in 1992. Dr. Bai is currently a Professor at the School of Mechanical Engineering at Yeungnam University in Kyungsan, Korea. His research interests include heat transfer, refrigeration and air control.  相似文献   

6.
The water droplet motion in a PEMFC gas channel with multiple pores, through which water emerges, is studied numerically by solving the equations governing the conservation of mass and momentum. The liquid-gas interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface. The method is modified to implement the contact angle conditions on the walls and pores. The dynamic interaction between the droplets growing on multiple pores is investigated by conducting the computations until the droplet growth and sliding motion exhibits a periodic pattern. The numerical results show that the configuration subject to droplet merging is not effective for water removal and that the wettability of channel wall strongly affects water management in the PEMFC gas channel. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Gihun Son received his B.S. and M.S. degrees in Mechanical Engineering from Seoul National University in 1986 and 1988, respectively, and Ph.D. degree in Mechanical Engineering from UCLA in 1996. Dr. Son is currently a professor of Mechanical Engineering at Sogang University in Seoul, Korea. His research interests are in the area of multiphase dynamics, heat transfer, and power system simulation. Jiyoung Choi received a B.S. degree in Mechanical Engineering from Sogang University in 2005. He is a graduate student of Mechanical Engineering at Sogang University in Seoul, Korea. Choi’s research interests are in the area of PEM fuel cell and microfluidics.  相似文献   

7.
In HVAC system, the oil circulation is inevitable because the compressor requires the oil for lubrication and sealing. A small portion of the oil circulates with the refrigerant flow through the system components while most of the oil stays or goes back to the compressor. Because oil retention in refrigeration systems can affect system performance and compressor reliability, proper oil management is necessary in order to improve the compressor reliability and increase the overall efficiency of the system. This paper describes a numerical analysis of oil distribution in each component of the commercial air conditioning system including the suction line, discharge line and heat exchanger. In this study, system modeling was conducted for a compressor, discharge line, condenser, expansion valve, evaporator and suction line. Oil separation characteristics of the compressor were taken from the information provided by manufacturer. The working fluid in the system was a mixture of a R-410A refrigerant and PVE oil. When the oil mass fraction (OMF) was assumed, oil mass distribution in each component was obtained under various conditions. The total oil hold-up was also investigated, and the suction line contained the largest oil hold-up per unit length of all components. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Min Soo Kim received his B.S., M.S., and Ph.D. degree at Seoul National University, Korea in 1985, 1987, and 1991, respectively. After Ph.D. degree, Prof. Kim worked at National Institute of Standards and Technology (NIST) in U.S.A. for about three years. He is currently a professor at the School of Mechanical and Aerospace Engineering of Seoul National University, Korea. Jong Won Choi received B.S. degree in Mechanical Engineering from Korea University in Seoul, Korea, in 2004, and then received M.S. degrees from Seoul National University in 2006. He is currently a student in Ph.D. course at the School of Mechanical and Aerospace Engineering of Seoul National University in Seoul, Korea. His research interests include refrigeration system, micro-fluidic devices, and PEM fuel cell as an alternative energy for next generation. Mo Se Kim received B.S. degree in Mechanical and Aerospace Engineering from Seoul National University in Seoul, Korea, in 2007. He is currently a student in M.S. course at the School of Mechanical and Aerospace Engineering of Seoul National University in Seoul, Korea. He had studied on the oil migration in the heat pump system, and now he studies on the refrigeration system using an ejector. Baik-Young Chung received his B.S., M.S., and Ph.D. degrees in Mechanical Engineering from Inha University, Korea in 1984, 1986, and 2001, respectively. He is currently a research fellow of HAC Research Center at LG Electronics. He is responsible for the commercial air conditioner group. Sai-Kee Oh received B.S. degree in Mechanical Engineering from Seoul National University, Korea in 1989, and then received M.S. and Ph.D. degrees from KAIST, Korea in 1991 and 1997, respectively. He is currently a principal research engineer of HAC Research Center at LG Electronics. He is responsible for the residential air conditioner group. Jeong-Seob Shin received B.S. degree in Machine Design and Production Engineering from Hanyang University, Korea in 1988, M.S. degree in Mechanical Engineering from KAIST, Korea in 1991, and Ph.D. degree in Mechanical Engineering from POSTECH, Korea in 2004. He has joined HAC Research Center at LG Electronics since 2006 as a principal research engineer.  相似文献   

8.
Friction-induced ignition modeling of energetic materials   总被引:1,自引:0,他引:1  
The heat released during the external frictional motion is a factor responsible for initiating energetic materials under all types of mechanical stimuli including impact, drop, or penetration. We model the friction-induced ignition of cyclotrimethylenetrinitramine (RDX), cyclotetramethylene-tetranitramine (HMX), and ammonium-perchlorate/ hydroxylterminated-polybutadiene (AP/HTPB) propellant using the BAM friction apparatus and one-dimensional time to explosion (ODTX) apparatus whose results are used to validate the friction ignition mechanism and the deflagration kinetics of energetic materials, respectively. A procedure to obtain the time-to-ignition for each energetic sample due to friction is outlined. This paper was presented at the 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, October 2008. Min-cheol Gwak received his B.S. degree in Mechanical Engineering from Korea Aerospace University, Korea, in 2007. Now he is a graduate student of Mechanical and Aerospace Engineering at Seoul National University in Seoul, Korea. His research interests are ignition of high energy material and combustion phenomena. Tae-yong Jung received his B.S. degree in Mechanical and Aerospace Engineering from Seoul National University, Korea, in 2007. Now he is a graduate student of Mechanical and Aerospace Engineering at Seoul National University in Seoul, Korea. His research interests are solid propellant combustion and phase transformation. Professor J. Yoh received his BSME from UC Berkeley in 1992 and MSME from UCLA in 1995. His doctoral degree is in Theoretical & Applied Mechanics from the University of Illinois at Urbana-Champaign, 2001. His research interest is in high energy system design using high power lasers and condensed energetic materials.  相似文献   

9.
An optimization of rapid thermal processing (RTP) was conducted to obtain uniform temperature distribution on a wafer surface by using linear programming and radiative heat transfer modeling. The results show that two heating lamp zones are needed to maintain uniform wafer temperature and the optimal lamp positions are unique for a given geometry and not affected by wafer temperatures. The radii of heating lamps, which were obtained by optimization, are 45 mm and 108 mm. The emissivity and temperature of the chamber wall do not significantly affect the optimal condition. With obtained optimum geometry of the RTP chamber and lamp positions, the wafer surface temperatures were calculated. The uniformity allowance of the wafer surface is less than ±1°C when the mean temperature of the wafer surface is 1000°C. This paper was recommended for publication in revised form by Associate Editor Dongsik Kim Hyuck-Keun Oh received the B.S. and M.S degrees in Mechanical & Aerospace Engineering from Seoul National University in 2000 and 2002, respectively. He had experienced mechanical and electrical engineering in the Samsung SDI Corporation on various display devices between 2002 and 2007. He is now pursuing the Ph.D degree in Mechanical & Aerospace engineering at Seoul National University, Korea. His research interests are heat transfer and thermal management with a focus on power generation and energy efficiency. Sae Byul Kang received the B.S degree in Mechanical engineering from Korea University in 1996. He then went on to receive his M.S and Ph.D. degrees from Seoul National University in 1998 and 2003, respectively. Dr. Kang is currently a senior researcher at the Korea Institute of Energy Research in Daejeon, Korea. Dr. Kang’s research interests are development of industrial boiler and burner for bio-mass. Young Ki Choi received the B.S and M.S degrees in Mechanical engineering from Seoul National University in 1978 and 1980, respectively and the Ph.D. de-gree in mechanical engineering from the University of California at Berkeley in 1986. He is currently a professor at the School of Mechanical Engineering, Chung Ang University, Korea. His research interests are in the area of micro/nanoscale energy conversion and transport, computational fluid dynamics, and molecular dynamics simulations. Joon Sik Lee received the B.S and M.S degrees in Mechanical engineering from Seoul National University in 1976 and 1980, respectively and the Ph.D. degree in mechanical engineering from the University of California at Berkeley in 1985. He is currently a professor at the School of Mechanical & Aerospace Engineering, Seoul National University, Korea. He is also the director of Micro Thermal System Research Center. His research interests are in the area of micro/nanoscale energy conversion and transport, thermal management for power generation and energy efficiency, and various convective heat transport phenomena such as pool boiling and nanofluid.  相似文献   

10.
Heat transfer coefficients were measured by the improved hue detection based liquid crystal technique in a turbine blade internal cooling passage model with blockage walls. In the experiments, blockages with 9 holes of circular, wide, narrow shapes were used and for the circular shape, the number of hole of 7, 9, and 11 were tested. For all cases, the perforated area was kept same. Results showed that the staggered impingement jets increased heat transfer coefficient, however, pressure drop also increased greatly. Generally, Nusselt number ratio and the thermal performance factor decreased as Reynolds number increased. For all Reynolds numbers tested, the blockage wall with wide holes gave more uniform heat transfer coefficient and higher thermal performance factor. As the number of hole increased from 7 to 11, the distribution of heat transfer coefficient became uniform and the thermal performance factor increased. This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.  相似文献   

11.
A numerical analysis was conducted to investigate and characterize the unsteadiness of the flow structure and oscillatory vacuum pressure inside of a supersonic diffuser equipped to simulate high-altitude rocket performance on the ground. A physical model including a rocket motor, vacuum chamber, and diffuser, which have axisymmetric configurations was employed. Emphasis was placed on investigating the physical phenomena of very complex and oscillatory flow evolutions in the diffuser operating very close to the starting condition, i.e. at a minimum starting condition, which is one of the major important parameters from a diffuser design point of view. This paper was recommended for publication in revised form by Associate Editor Jun Sang Park Hyo-Won Yeom received a B.S. degree in the department of Aerospace & Mechanical Engineering from Korea Aerospace University in 2007. He is currently a master candidate at the school of Aerospace & Mechanical Engi-neering at Korea Aerospace Uni-versity in Goyang-city, Korea. His research interests are in the area of numerical analysis for High-speed propulsion system. Sangkyu Yoon received a B.S. degree in the department of Aerospace & Mechanical Engineering from Korea Aerospace University in 2006 and M.S. degrees in the school of Aerospace & Mecha-nical Engineering from Korea Aerospace University in 2008. He currently works in Hanwha Corporation R&D Center. Hong-Gye Sung received a B.S. degree in the department of Aerospace Engineering from Inha University in 1984 and Ph.D. degree in Nuclear and Mechanical Engineering from The Pennsylvania State University in 1999. Dr. Sung has various research experiences in the fields of high-speed propulsion and rocket propulsion in Agency for Defense Development for 22 years (1984–2006). He is currently a professor at the School of Aerospace and Mechanical Engineering of Korea Aerospace University in Goyang, Korea. Dr. Sung’s research interests are in the area of propulsion, combustion, and its control.  相似文献   

12.
The spacer grid assembly, an interconnected array of slotted grid straps embossed with dimples and springs, is one of the main structural components of a pressurized light-water reactor (PWR). It takes the role of supporting the nuclear fuel rods which experience a severe expansion and contraction caused by harsh operational conditions such as an earthquake. The external load by an earthquake can be mainly represented as a lateral load, and the resistance to it is evaluated in terms of dynamic crush strengths. It has been reported that a dimple location in a space grid has an effect on this strength. In this paper, based on this fact, the effect of a dimple location in a 3×3 support grid on impact strength has been investigated as a preliminary parameter study for a full sized support grid. The optimal location of the dimple, about 3.5 mm from the tip of the strap, has been found and some design guidelines for a support grid such as reducing the spring length and the dimple gap have been provided. This paper was recommended for publication in revised form by Associate Editor Heoung-Jae Chun Keenam Song received his B.S. degree in the department of mechanical engineering from Seoul National University in 1980, then went on to receive his M.S. degree at KAIST in 1982. Since then he has served as a researcher, senior researcher, principal researcher, and project manager at Korea Atomic Energy Research Institute. Soobum Lee is a postdoctoral research associate in the University of Maryland, U.S. He received the B.S. degree in Mechanical Design and Production Engineering from Yonsei University, Seoul, Korea, in 1998, and the M.S. and Ph.D. degree in Mechanical Engineering from KAIST (Korea Advanced Institute of Science and Technology), Korea, in 2000. His main research interests include structural shape and topology optimization, energy harvester design, nuclear plant design for hydrogen production, robust design using Taguchi method, genetic algorithm, automobile part and system design. He received the best paper award from Korean Society of Mechanical Engineering in 2007.  相似文献   

13.
A study of the velocity and thermal boundary layers on a semi-infinite inclined plate with temperature oscillations is presented in this work. The non-linear, coupled parabolic integro-partial differential equations governing flow and heat transfer have been solved numerically using an implicit finite difference scheme of Crank-Nicolson type. The numerical values for the flow field, temperature, shearing stress, and heat transfer coefficients are presented in a graphical form. It is observed that the velocity and temperature profiles decrease as the frequency parameter increases. This paper was recommended for publication in revised form by Associate Editor Yang Na G. Palani received his B.Sc. and M.Sc. degrees from Madras University, India, in 1991 and 1993, respectively, and his Ph.D. degree from Anna University, India in 2001. Dr. G. Palani is currently a Post Doctoral Research Fellow at the School of Mechanical Engineering of Inha University in Incheon, Korea. Kwang-Yong Kim received his B.S. degree from Seoul National University in 1978, and his M.S. and Ph.D. degrees from the Korea Advanced Institute of Science and Technology (KAIST), Korea, in 1981 and 1987, respectively. He is currently a professor and the chairman of the School of Mechanical Engineering of Inha University, Incheon, Korea. Professor Kim is also the current editor-inchief of the Transactions of Korean Society of Mechanical Engineers (KSME), the editor-in-chief of the International Journal of Fluid Machinery and Systems (IJFMS), and the chief vice president of the Korean Fluid Machinery Association (KFMA). He is likewise a fellow of the American Society of Mechanical Engineers (ASME).  相似文献   

14.
To find a way of improving pool boiling heat transfer on a vertical tube surface, a revised annulus has been investigated experimentally. The annulus with closed bottoms has a shorter outer tube than the inside heated tube. For the study, three tube diameters (16.5, 19.1, and 25.4mm) and water at atmospheric pressure were used. The annular gap covers from 3.2 to 19.3mm in size and is generated by several glass tubes, which are fabricated around the heated tube. To clarify effects of the revised annulus on heat transfer, experimental results of the annulus were compared to the data of unrestricted tubes. The heat transfer coefficients for the revised annulus increased remarkably in comparison to the unrestricted tube. This paper was recommended for publication in revised form by Associate Editor Jae Young Lee Myeong-Gie Kang received his B.S. degree in Precision Mechanical Engineering from Pusan National University, Korea, in 1986. He then received his M.S. and Ph.D. degrees from KAIST in 1988 and 1996, respectively. Dr. Kang is currently a Professor at the Department of Mechanical Engineering Education at Andong National University in Andong, Korea. He has served as an engineer and researcher in KEPCO for 7 years. His research interests include pool boiling heat transfer, flow induced vibration, and nuclear thermo-hydraulics.  相似文献   

15.
Effects of the bulk inlet velocity on the characteristics of dual-inlet side-dump flows are numerically investigated. Non-reacting subsonic turbulent flow is solved by a preconditioned Reynolds-averaged Navier-Stokes equation system with low-Reynolds number k − ɛ turbulence model. The numerical method is properly validated with measured velocity distributions in the head dome and the combustor. With substantial increase in the bulk inlet velocity, general profiles of essential primary and secondary flows normalized by the bulk inlet velocity are quantitatively invariant to the changes in the bulk inlet velocity. This paper was recommended for publication in revised form by Associate Editor Do Hyung Lee Seung-chai Jung received his B.S. degree in Mechanical Engineering from Yonsei University, Korea, in 2001. He then received his M.S. degree in Mechanical Engineering from Yonsei University, Korea, in 2005. Mr. Jung is currently a Ph. D. candidate at Yonsei University, where he is majoring in Mechanical Engineering. Mr. Jung’s research interests include propulsion system and particle-surface collision dynamics. Byung-Hoon Park received his B.S. degree in Mechanical Design and Production Engineering from Yonsei University in 2003. He is currently a Ph.D. candidate in Yonsei University in Seoul, Korea. His research interests include performance design of propulsion systems and nu-merical analysis of instability in multiphase turbulent reacting flow-fields. Hyun Ko received his B.S. degree in Aerospace Engineering from Chonbuk National University, Korea, in 1996. He then received his M.S. degree in Mechanical Design from Chonbuk National University, Korea, in 1998. In 2005, he obtained his Ph.D. degree from Yonsei University, where he majored in mechanical engineering. Dr. Ko is currently a Principal Research Engineer of the MicroFriend Co., Ltd. in Seoul, Korea. His research interests include propulsion related systems and computational fluid dynamics. Woong-sup Yoon received his B.S. degree in Mechanical Engineering from Yonsei University, Korea, in 1985. He then received his M.S. degree from University of Missouri-Rolla in 1989. In 1992, he obtained his Ph.D. degree from the University of Alabama in Huntsville, where he majored in mechanical and aerospace engineering. Dr. Yoon is currently a professor at the School of Mechanical Engineering at Yonsei University in Seoul, Korea. His research interests include propulsion system and particle-related environmental/ thermal engineering.  相似文献   

16.
Uncertainty or reliability analysis is to investigate the stochastic behavior of response variables due to the randomness of input parameters, and evaluate the probabilistic values of the responses against the failure, which is known as reliability. While the major research for decades has been made on the most probable point (MPP) search methods, the dimension reduction method (DRM) has recently emerged as a new alternative in this field due to its sensitivity-free nature and efficiency. In the recent implementation of the DRM, however, the method was found to have some drawbacks which counteract its efficiency. It can be inaccurate for strong nonlinear response and is numerically instable when calculating integration points. In this study, the response function is approximated by the Kriging interpolation technique, which is known to be more accurate for nonlinear functions. The integration is carried out with this meta-model to prevent the numerical instability while improving the accuracy. The Kriging based DRM is applied and compared with the other methods in a number of mathematical examples. Effectiveness and accuracy of this method are discussed in comparison with the other existing methods. This paper was recommended for publication in revised form by Associate Editor Tae Hee Lee Junho Won received B.S. and M.S. degree in Mechanical and Aerospace Engineering from Korea Aerospace University in 2004 and 2006, respectively. He is currently a doctoral course at the departments of Mechanical and Aerospace Engineering, Korea Aerospace University in Gyeonggi, Korea. His research interests are in the area of reliability analysis, multidisciplinary design optimization, and fatigue analysis. Changhyun Choi received B.S. and M.S. degree in Mechanical and Aerospace Engineering from Korea Aerospace University in 2006 and 2008, respectively. He is currently researcher at the SFA Engineering Corp. in kyungnam, Korea. His research interests are in the area of computer control system, high reliable product technology, and factory automation system. Jooho Choi received a B.S. degree in Mechanical Engineering from Hanyang University in 1981. He then went on to receive his M.S. and Ph.D. degrees from KAIST in 1983 and 1987, respectively. Dr. Choi is currently a Professor at the School of Mechanical and Aerospace Engineering, Korea Aerospace University in Gyeonggi, Korea. He is currently serving as an Editor of the Journal of Mechanical Science &Technology. Dr. Choi’s research interests are in the area of reliability analysis, multidisciplinary design optimization, and design optimization using automation system integrated with CAD/CAE.  相似文献   

17.
Nature-inspired flapping foils have attracted interest for their high thrust efficiency, but the large motions of their boundaries need to be considered. It is challenging to develop robust, efficient grid deformation algorithms appropriate for the large motions in three dimensions. In this paper, a volume grid deformation code is developed based on finite macro-element and transfinite interpolation, which successfully interfaces to a structured multi-block Navier-Stokes code. A suitable condition that generates the macro-elements with efficiency and improves the robustness of grid regularity is presented as well. As demonstrated by an airfoil with various motions related to flapping, the numerical results of aerodynamic forces by the developed method are shown to be in good agreement with those of an experimental data or a previous numerical solution. This paper was recommended for publication in revised form by Associate Editor Do Hyung Lee Jin Hwan Ko received his B.S. degree in Mechanical Engineering from KAIST, Korea, in 1995. He then received his M.S. and Ph.D. degrees from KAIST in 1997 and 2004, respectively. Dr. Ko is currently a research professor at the School of Mechanical and Aerospace Engineering at Seoul National University in Seoul, Korea. His research interests include fluid-structure interaction analysis, structural dynamics of a micro-scale resonator, and model order reduction. Soo Hyung Park received his B.S. degree in Aerospace Engineering from KAIST, Korea, in 1996. He then received his M.S. and Ph.D. degrees from KAIST in 1999 and 2003, respectively. Prof. Park is currently an assistant professor at the Dept. of Aerospace Information Engineering at Konkuk University in Seoul, Korea. His research interests include computational fluid dynamics, fluid-structure interaction analysis, rotorcraft aerodynamics, and turbulence modeling.  相似文献   

18.
The characteristics of NOx emissions in pure hydrogen nonpremixed jet flames with coaxial air are analyzed numerically for a wide range of coaxial air conditions. Among the models tested in simple nonpremixed jet flame, the one-half power scaling law could be reproduced only by the Model C using the HO2/H2O2 reaction, implying the importance of chemical nonequilibrium effect. The flame length is reduced significantly by augmenting coaxial air, and could be represented as a function of the ratio of coaxial air to fuel velocity. Predicted EINOx scaling showed a good concordance with experimental data, and the overall one-half power scaling was observed in coaxial flames with Model C when flame residence time was defined with flame volume instead of a cubic of the flame length. Different level of oxygen mass fraction at the stoichiometric surface was observed as coaxial air was increased. These different levels imply that the coaxial air strengthens the nonequilibrium effect. This paper was recommended for publication in revised form by Associate Editor Haecheon Choi Hee-Jang Moon received his B.S. degree in Aeronautical Engineering from Inha University, Korea in 1986. He then received his M.S. and Doctoral degrees from Universite de Rouen, France in 1988 and 1991, respectively. Dr. Moon is currently a Professor at the School of Aerospace and Mechanical Engineering at Korea Aerospace University in Koyang, Korea. He serves on the Editorial Board of the Korean Society of Propulsion Engineers. His research interests are in the area of turbulent combustion, hybrid rocket combustion and nanofluids. Youngbin Yoon received his B.S. and M.S. degrees in Aerospace Engineering from Seoul National University, Korea in 1985 and 1987, respectively. He received a Ph.D. degree from the University of Michigan in 1994. Dr. Yoon is currently a professor at the School of Mechanical and Aerospace Engineering in Seoul National University, Korea. He is currently on the Editorial board and executive of ILASS-KOREA. The research areas of Dr. Yoon are liquid rocket injectors, combustion instability and control, ram and gas turbine combustor and laser diagnostics.  相似文献   

19.
Mechanical properties of the electro-active paper (EAPap) actuator were tested to investigate its hygrothermal behavior. Tensile creep behavior was studied with constant load at 30–70% relative humidity ranges and 25–40°C temperature. Creep deformation showed typical trend of abrupt strain increase in a short period followed by steady increase of strain, which resulted from the breakdown of cellulose microfibrils. Dependence on the material orientation of EAPap was observed in the creep tests. As changing the orientation of EAPap samples, the creep resistances were varied. Creep strains and creep strain rates were increased as increasing the relative humidity level at 25°C. However, at the elevated temperature of 40°C, the creep strain rate at secondary creep was not significantly raised under increased relative humidity level from 30% to 50%. The hygrothermal effect by increasing the relative humidity level and temperature on the creep rate was reduced due to the saturated moisture at a higher temperature even with lower humidity level. The activation energy levels for creep were around 607–658 kJ/mol for 30% relative humidity level and 623–671 kJ/mol for 50% relative humidity level depending on the material orientation. Understanding of hygrothermal effect in conjunction with the humidity and temperature provides useful information for the potential nano-bio applications of the EAPap actuator. This paper was recommended for publication in revised form by Associate Editor Chongdu Cho Heung Soo Kim received his B.S. and M.S. degrees in the Department of Aerospace Engineering from Inha University, Korea in 1997 and 1999, respectively. He got his Ph. D degree in the Department of Mechanical and Aerospace Engineering from Arizona State University in 2003. He is now working as an assistant professor in the School of Mechanical and Automotive Engineering, Catholic University of Daegu. His main research interests are in biomimetic actuators and sensors, structural health monitoring, smart materials and structures as applied to aerospace structures and vehicles. Chulho Yang received his B.S. and M.S. degree in Mechanical Engineering from Inha University in 1991 and 1993, respectively. He also obtained M.S. and Ph. D degree in Mechanical Engineering from University of Florida in 1995, and 1997, respectively. In March 2003, he joined the School of Mechanical Engineering at Andong National University, Korea, where he is now an Associate Professor. His main research interests are mechanical behavior of materials including smart materials both experimentally and computationally. Jaehwan Kim received his B.S. degree in Mechanical Engineering from Inha University, in 1985. He received his M.S. degree from KAIST in 1987 and his Ph.D. degree from The Pennsylvania State University in 1995. Dr. Kim is currently a Professor of Dept. of Mechanical Engineering at Inha University, Inchoen, Korea. He serves as an Associate Editor of Smart Materials and Structures. He is the director of Creative Research Center for EAPap Actuator supported by KOSEF. Dr. Kim’s research interests are smart materials such as piezoelectric materials, electro-active polymers and their applications including sensors, actuators, motors and MEMS devices.  相似文献   

20.
A numerical study on soot deposition in ethylene diffusion flames has been conducted to elucidate the effect of thermophoresis on soot particles under a microgravity environment. Time-dependent reactive-flow Navier-Stokes equations coupled with the modeling of soot formation have been solved. The model was validated by comparing the simulation results with the previous experimental data for a laminar diffusion flame of ethylene (C2H4) with enriched oxygen (35% O2 + 65% N2) along a solid wall. In particular, the effect of surrounding air velocity as a major calculation parameter has been investigated. Especially, the soot deposition length defined as the transverse travel distance to the wall in the streamwise direction is introduced as a parameter to evaluate the soot deposition tendency on the wall. The calculation result exhibits that there existed an optimal air velocity for the early deposition of soot on the surface, which was in good agreement with the previous experimental results. The reason has been attributed to the balance between the effects of the thermophoretic force and convective motion. This paper was recommended for publication in revised form by Associate Editor Ohchae Kwon Jae Hyuk Choi received his B.S. and M.S. degrees in Marine System Engineering from Korea Maritime University in 1996 and 2000, respectively. He then went on to receive a Ph.D. degrees from Hokkaido university in 2005. Dr. Choi is currently a BK21 Assistant Professor at the School of Mechanical and Aerospace Engineering at Seoul National University in Seoul, Korea. Dr. Choi’s research interests are in the area of reduction of pollutant emission (Soot and NOx), high temperature combustion, laser diagnostics, alternative fuel and hydrogen production with high temperature electrolysis steam (HTES). Junhong Kim received his B.S., M.S., and Ph. D degrees in Mechanical Engineering from Seoul National University in 1998, 2000, and 2004, respectively. His research interests include lifted flames, edge flames, and numerical simulation. Sang Kyu Choi received his B.S. degree in Mechanical Engineering from Seoul National University in 2004. He is a Ph. D student in the School of Mechanical Engineering, Seoul National University. His research interests include edge flames, oxy-fuel combustion, and numerical simulation. Byoung ho Jeon received his B.S degrees in Mechanical Engineering from kangwon University in 1998, and M.S., Ph. D. degrees in Mechanical Engineering from Hokkaido University in 2002, 2008, respectively. Dr Jeon is working at Korea Aerospace Research Institute from 2007. June. as Gasturbine engine developer. Jeon’s research interests are in the area of reduction of pollutant emission (Soot and Nox), High temperature combustion, combustion system (Furnace, Combine Generation system, IGCC, CTL), and Fire safety in building. Osamu Fujita received his B.S., M.S., and Ph. D. degrees in Mechanical Engineering from Hokkaido University in 1982, 1984, and 1987, respectively. Prof. Fujita is currently a Professor at the division of Mechanical and space Engineering at Hokkaido University in sapporo, Japan. Prof. Fujita’s research interests are in the area of reduction of pollutant emission (Soot and Nox), solid combustion, catalytic combustion, high temperature combustion, alternative fuel and fire safety in space. Suk Ho Chung received his B.S. degree in Mechanical Engineering in 1976 from Seoul National University, and his M.S. and Ph. D. degree in Mechanical Engineering in 1980 and 1983, respectively from Northwestern University. He is a professor since 1984 in the School of Mechanical and Aerospace Engineering, Seoul National University. His research interests cover combustion fundamentals, pollutant formation, and laser diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号