首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
During the last week of June 2001, a bright apparition of Neptune's South Polar Feature (SPF) at 70°S was observed to develop and decay in less than 30 hours, displaying contrast of ∼2.5 at 619 nm. Assuming that the same SPF was observed on two consecutive rotations of Neptune, the feature moved eastward at 3.2±1.8° hr−1 (130±80 m s−1). The SPF made no obvious appearances during eight other Hubble Space Telescope (HST) observations of Neptune between July 2000 and June 2001, although there was a faint feature at 70°S in one image in October 2000. A prominent SPF was present in near-IR Keck Telescope images in August 2000. Bright SPFs are seen on ∼10% of the HST images of Neptune obtained since 1994, and a fainter SPF is visible on another ∼10%. An SPF bright enough to be visible at HST resolution was present around half the time during the last week of Voyager's approach to Neptune in August 1989, with one prominent brightening, suggesting that the SPF is less visible now than in 1989.  相似文献   

2.
Hubble Space Telescope (HST) and ground-based observations of Neptune from 1991 to 2000 show that Neptune's northern Great Dark Spots (NGDS) remained remarkably stable in latitude and longitudinal drift rate, in marked contrast to the 1989 southern Great Dark Spot (GDS), which moved continuously equatorward during 1989 and dissipated unseen during 1990. NGDS-32, discovered in October 1994 HST images, (H. B. Hammel et al., 1995, Science268, 1740-1742), stayed at ∼32°N from 1994 through at least 1996, and possibly through 2000. The second northern GDS (NGDS-15), discovered in August 1996 HST images, (L. A. Sromovsky et al. 2001, Icarus146, 459-488), appears to have existed as early as 8 March 1996 and remained near 15°N for the 16 months over which it was observed. NGDS-32 had a very uniform longitudinal drift rate averaging −36.28±0.04°/day from 10 October 1994 to 2 November 1995, and −35.84±0.02°/day from 1 September 1995 through 24 November 1995. A single circulation feature certainly exists during each of the first two periods, though it is not certain that it is the same feature. It is probable, but less certain, that only a single circulation feature was tracked during the 1996-1998 period, during which positions are consistent with a modulated drift rate averaging −35.401±0.001°/day, but with a peak-to-peak modulation of 1.5°/day with an ∼760-day period. If NDS-32 varied its drift rate in accord with the local latitudinal shear in the zonal wind, then all its drift-rate changes might be due to only ∼0.4° of latitudinal motion. The movement of NGDS-15 is also not consistent with a uniform longitudinal drift rate, but the nature of its variation cannot be estimated from the limited set of observations. The relatively stable latitudinal positions of both northern dark spots are not consistent with current numerical model calculations treating them as anticyclonic vortices in a region of uniform potential vorticity gradient (R. P. Lebeau and T. E. Dowling 1998, Icarus132, 239-265). Possible explanations include unresolved latitudinal structure in the zonal wind background or unaccounted-for variations in vertical stability structure.  相似文献   

3.
Erich Karkoschka 《Icarus》2011,215(2):759-773
The analysis of all suitable images taken of Neptune with the Wide Field Planetary Camera 2 on the Hubble Space Telescope between 1994 and 2008 revealed the following results. The activity of discrete cloud features located near Neptune’s tropopause remained roughly constant within each year but changed significantly on the time scale of ∼5 years. Discrete clouds covered 1% of the disk on average, but more than 2% in 2002. The other ∼99% of the disk probed Neptune’s hazes at lower altitudes. At red and near-infrared wavelengths, two dark bands around −70° and 10° latitude were perfectly steady and originated in the upper two scale heights of the troposphere, either by decreased haze opacity or by an increased methane relative humidity. At blue wavelengths, a dark band between −60° and −30° latitude was most obvious during the early years, caused by dark aerosols below the 3-bar level with single scattering albedos reduced by ∼0.04, and this contrast was constant between 410 and 630 nm wavelength. The dark band decayed exponentially with a time constant of 5 ± 1 years, which can be explained by settling of the dark aerosols at a rate of 1 bar pressure difference per year. The other latitudes brightened with the same time constant but lower amplitudes. The only exception was a darkening event in the 15-30° latitude region between 1994 and 1996, which coincides with two dark spots observed in the same region during the same time period, the only dark spots seen since Voyager. The dark aerosols had a similar latitudinal distribution as the discrete clouds near the tropopause, although both were separated by four scale heights. Photometric analysis revealed a phase coefficient of 0.0028 ± 0.0010 mag/deg for the 0-2° phase-angle range observable from Earth. Neptune’s sub-Earth latitude varied by less than 3° throughout the observation period providing a data set with almost constant viewing geometry. The trends observed up to 2008 continued into 2010 based on images taken with the Wide Field Camera 3.  相似文献   

4.
We analyzed a data cube of Neptune acquired with the Hubble STIS spectrograph on August 3, 2003. The data covered the full afternoon hemisphere at 0.1 arcsec spatial resolution between 300 and 1000 nm wavelength at 1 nm resolution. Navigation was accurate to 0.004 arcsec and 0.05 nm. We constrained the vertical aerosol structure with radiative transfer calculations. Ultraviolet data confirmed the presence of a stratospheric haze of optical depth 0.04 at 370 nm wavelength. Bright, discrete clouds, most abundant near latitudes −40° and 30°, had their top near the tropopause. They covered 1.7% of the observed disk if they were optically thick. The methane abundance above the cloud tops was 0.0026 and 0.0017 km-am for southern and northern clouds, respectively, identical to earlier observations by Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Dowling, T.E., Baines, K.H., Limaye, S.S., [2001b]. Icarus 149, 459-488). Aside from these clouds, the upper troposphere was essentially clear. Below the 1.4-bar layer, a vertically uniform haze extended at least down to 10 bars with optical depth of 0.10-0.16/bar, depending on the latitude. Haze particles were bright at wavelengths above 600 nm, but darkened toward the ultraviolet, at the equator more so than at mid and high latitudes. A dark band near −60° latitude was caused by a 0.01 decrease of the single scattering albedo in the visible, which was close to unity. A comparison of methane and hydrogen absorptions contradicted the current view that methane is uniformly mixed in latitude and altitude below the ∼1.5-bar layer. The 0.04 ± 0.01 methane mixing ratio is only uniform at low latitudes. At high southern latitudes, it is depressed roughly between the 1.2 and 3.3-bar layers compared to low-latitude values. The maximum depression factor is ∼2.7 at 1.8 bars. We present models with 2° latitude sampling across the full sunlit globe that fit the observed reflectivities to 2.8% rms.  相似文献   

5.
L.A. Sromovsky  P.M. Fry 《Icarus》2008,193(1):252-266
Grism spectra of Uranus obtained at the Keck Observatory in 2006, using the NIRC2 instrument and adaptive optics, provide new constraints on the vertical structure of Uranus' cloud bands and on the volume mixing ratio of methane. The best model fits to H-band spectra (1.49-1.635 μm) are found for a methane volume mixing ratio of 1.0 ± 0.25% for latitudes near 43° S and 1-1.6% for latitudes of 12° S and 33° N. Analysis of the J-band spectra are confused by discrepancies between short-wave and long-wave sides of the 1.28 μm window region. The short-wave side of the window (1.23-1.30 μm) is best fit with 1.6% CH4, but if the fitted spectral range is extended to include the long-wave side of the window (1.2-1.34 μm), the best fit CH4 mixing ratio is 4% or more, although many small scale spectral features are poorly fit over this range even at high methane mixing ratios, suggesting that models of methane opacity may be inconsistent in this spectral region. Most of the latitudinal variability of the H-band spectra can be fit with clouds near 2-3 and 6-8 bar, with cloud reflectivity of the deeper layer increasing from ∼2% at 33° N to 3-4% in the southern hemisphere. This layer is most likely made of H2S particles and appears weakly reflective because it is optically thin and possibly also contaminated by absorbing materials. The reflectivity of the 2-3-bar cloud increases from 0.5% at 33° N to ∼1% at the bright band centered near 43° S, where the upper cloud is a little higher (pressure is 10% lower) and ∼25% more reflective than at nearby latitudes. The bright band is also associated with lowering of the deep cloud pressure, by ∼1.4 bar. The bright band parameters are roughly consistent with those obtained from 1975 disk-averaged spectra, obtained when the southern hemisphere was more exposed to the Sun. The lack of significant cloud particle contributions near 1.2 bar, where occultation results suggested a methane cloud, is confirmed by both spectra and HST imaging observations.  相似文献   

6.
A series of narrow-band images of Saturn was acquired on 7-11 February 2002 with an acousto-optic imaging spectrometer (AImS) at about 160 wavelengths between 500 and 950 nm. Our unique data set with high spectral agility and wide spectral coverage enabled us to extensively study the cloud structure and aerosol properties of Saturn's equatorial region at −10° latitude. Theoretical center-limb profiles based on twelve cloud models were fit to the observations at 23 wavelengths across the 619-, 727-, and 890-nm methane bands. A simultaneous multiwavelength multivariable fitting algorithm was adopted in varying up to 9 free parameters to efficiently explore the vast multidimensional parameter space, and a total of ∼12,000 initial conditions were tested. From the acceptable ranges of the model parameters, we obtained the following major conclusions: (1) the brightening of Saturn's equatorial region observed near 890 nm in February 2002 (I/F∼0.25 at the central meridian) results from high altitudes of a stratospheric haze layer (τ?∼0.05 above ∼0.04-bar level) and an upper tropospheric cloud (τ∼6 above ∼0.25-bar level), (2) if the upper tropospheric cloud is composed of ammonia ice particles and the Mie theory is applied, the mean particle size is larger than about 0.5 μm, (3) an optically thick cloud layer exists at a level of 0.5-2.2 bar below the upper cloud deck in Saturn's equatorial region. The ongoing observations by the Cassini spacecraft over wider spectral range and from various phase angles will further constrain Saturn's cloud structure and aerosol properties.  相似文献   

7.
L.A. Sromovsky 《Icarus》2005,173(1):254-283
Raman scattering by H2 in Neptune's atmosphere has significant effects on its reflectivity for λ<0.5 μm, producing baseline decreases of ∼20% in a clear atmosphere and ∼10% in a hazy atmosphere. However, few accurate Raman calculations are carried out because of their complexity and computational costs. Here we present the first radiation transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Trafton's (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH4 bands is mainly Raman scattered is not valid for current estimates of the CH4 vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptune's geometric albedo by ∼6% in the 0.22-0.26 μm range and by ∼13% in the 0.35-0.45 μm range. A sample haze model with 0.2 optical depths of 0.2-μm radius particles between 0.1 and 0.8 bars fits reasonably well, but is not a unique solution. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, 174-192) method of applying Raman corrections to calculated spectra and removing Raman effects from observed spectra is shown to have limited applicability and to undercorrect the depths of weak CH4 absorption bands. The relatively large Q-branch contribution observed by Karkoschka is shown to be consistent with current estimates of Raman cross-sections. The Wallace (1972, Astrophys. J. 176, 249-257) approximation, produces geometric albedo ∼5% low as originally proposed, but can be made much more accurate by including a scattering contribution from the vibrational transition. The original Pollack et al. (1986, Icarus 65, 442-466) approximation is inaccurate and unstable, but can be greatly improved by several simple modifications. A new approximation based on spectral tuning of the effective molecular single scattering albedo provides low errors for zenith angles below 70° in a clear atmosphere, although intermediate clouds present problems at longer wavelengths.  相似文献   

8.
In this work we analyze and compare the vertical cloud structure of Saturn's Equatorial Zone in two different epochs: the first one close to the Voyagers flybys (1979-1981) and the second one in 2004, when the Cassini spacecraft entered its orbit around the planet. Our goal is to retrieve the altitude of cloud features used as zonal wind tracers in both epochs. We reanalyze three different sets of photometrically calibrated published data: ground-based in 1979, Voyager 2 PPS and ISS observations in 1981, and we analyze a new set of Hubble Space Telescope images for 2004. For all situations we reproduced the observed reflectivity by means of a similar vertical model with three layers. The results indicate the presence of a changing tropospheric haze in 1979-1981 (Ptop∼100 mbar, τ∼10) and in 2004 (Ptop∼50 mbar, τ∼15) where the tracers are embedded. According to this model the Voyager 2 ISS images locate cloud tracers moving with zonal velocities of 455 to 465 (±2) m/s at a pressure level of 360 ± 140 mbar. For HST observations, our previous works had showed cloud tracers moving with zonal wind speeds of 280±10 m/s at a pressure level of about 50±10 mbar. All these values are calculated in the same region (3°±2° N). This speed difference, if interpreted as a vertical wind shear, requires a change of per scale height, two times greater than that estimated from temperature observations. We also perform an initial guess on Cassini ISS vertical sounding levels, retrieving values compatible with HST ones and Cassini CIRS derived vertical wind shear, but not with Voyager wind measurements. We conclude that the wind speed velocity differences measured between 1979-1981 and 2004 cannot be explained as a wind shear effect alone and demand dynamical processes.  相似文献   

9.
Observations of Neptune were made in September 2009 with the Gemini-North Telescope in Hawaii, using the NIFS instrument in the H-band covering the wavelength range 1.477–1.803 μm. Observations were acquired in adaptive optics mode and have a spatial resolution of approximately 0.15–0.25″.The observations were analysed with a multiple-scattering retrieval algorithm to determine the opacity of clouds at different levels in Neptune’s atmosphere. We find that the observed spectra at all locations are very well fit with a model that has two thin cloud layers, one at a pressure level of ∼2 bar all over the planet and an upper cloud whose pressure level varies from 0.02 to 0.08 bar in the bright mid-latitude region at 20–40°S to as deep as 0.2 bar near the equator. The opacity of the upper cloud is found to vary greatly with position, but the opacity of the lower cloud deck appears remarkably uniform, except for localised bright spots near 60°S and a possible slight clearing near the equator.A limb-darkening analysis of the observations suggests that the single-scattering albedo of the upper cloud particles varies from ∼0.4 in regions of low overall albedo to close to 1.0 in bright regions, while the lower cloud is consistent with particles that have a single-scattering albedo of ∼0.75 at this wavelength, similar to the value determined for the main cloud deck in Uranus’ atmosphere. The Henyey-Greenstein scattering particle asymmetry of particles in the upper cloud deck are found to be in the range g ∼ 0.6–0.7 (i.e. reasonably strongly forward scattering).Numerous bright clouds are seen near Neptune’s south pole at a range of pressure levels and at latitudes between 60 and 70°S. Discrete clouds were seen at the pressure level of the main cloud deck (∼2 bar) at 60°S on three of the six nights observed. Assuming they are the same feature we estimate the rotation rate at this latitude and pressure to be 13.2 ± 0.1 h. However, the observations are not entirely consistent with a single non-evolving cloud feature, which suggests that the cloud opacity or albedo may vary very rapidly at this level at a rate not seen in any other giant-planet atmosphere.  相似文献   

10.
Erich Karkoschka 《Icarus》2011,215(1):439-448
The interior rotation and motions in giant planets have generally been probed only at radio wavelengths from spacecraft near the planet, except for Jupiter’s radio emission detectable from Earth. Here I suggest that Neptune’s interior can be indirectly probed at visible wavelength by tracking 10 features that are connected with a stationary latitudinal speed pattern of 7 m/s amplitude. All 10 features remained aligned at the same longitude throughout the Voyager observation period in 1989. Two of them, the South Polar Wave and South Polar Feature, have been observed from Earth for ∼20 years, but their extraordinary rotational stability was never recognized. They probably pinpoint Neptune’s rotational period (15.9663 ± 0.0002 h), one of the largest improvements in 346 years of measuring the giant planets’ rotations. The previous best estimate of Neptune’s rotational period (16.108 ± 0.006 h) was based on Voyager 2 radio data (Lecacheux, A., Zarka, P., Desch, M.D., Evans, D.R. [1993]. Geophys. Res. Lett. 20, 2711-2714). The new result suggests an upward revision of the mass of Neptune’s core. This finding may also question the accepted value of Uranus’ rotational period. The first reliable wind measurements within 15° of Neptune’s South Pole, based on tracking four features in Voyager images, show a 300 m/s eastward jet peaking near 76° South, while the area within 4° of the South Pole seems to be rotationally locked to the interior. These new observations of the stationary features and winds could address the long-standing question about the depth of the atmospheric circulation and may allow some constraints on convection currents in Neptune’s interior.  相似文献   

11.
P.G.J. Irwin  N.A. Teanby 《Icarus》2010,208(2):913-926
Long-slit spectroscopy observations of Uranus by the United Kingdom InfraRed Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s Northern Spring Equinox in December 2007.These spectra were analysed and presented by Irwin et al. (Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2009]. Icarus 203, 287-302), but since publication, a new set of methane absorption data has become available (Karkoschka, E., Tomasko, M. [2010]. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data. Icarus 205, 674-694.), which appears to be more reliable at the cold temperatures and high pressures of Uranus’ deep atmosphere. We have fitted k-coefficients to these new methane absorption data and we find that although the latitudinal variation and inter-annual changes reported by Irwin et al. (2009) stand, the new k-data place the main cloud deck at lower pressures (2-3 bars) than derived previously in the H-band of ∼3-4 bars and ∼3 bars compared with ∼6 bars in the J-band. Indeed, we find that using the new k-data it is possible to reproduce satisfactorily the entire observed centre-of-disc Uranus spectrum from 1 to 1.75 μm with a single cloud at 2-3 bars provided that we make the particles more back-scattering at wavelengths less than 1.2 μm by, for example, increasing the assumed single-scattering albedo from 0.75 (assumed in the J and H-bands) to near 1.0. In addition, we find that using a deep methane mole fraction of 4% in combination with the associated warm ‘F’ temperature profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001), the retrieved cloud deck using the new (Karkoschka and Tomasko, 2010) methane absorption data moves to between 1 and 2 bars.The same methane absorption data and retrieval algorithm were applied to observations of Neptune made during the same programme and we find that we can again fit the entire 1-1.75 μm centre-of-disc spectrum with a single cloud model, providing that we make the stratospheric haze particles (of much greater opacity than for Uranus) conservatively scattering (i.e. ω = 1) and we also make the deeper cloud particles, again at around the 2 bar level more reflective for wavelengths less than 1.2 μm. Hence, apart from the increased opacity of stratospheric hazes in Neptune’s atmosphere, the deeper cloud structure and cloud composition of Uranus and Neptune would appear to be very similar.  相似文献   

12.
We present Adaptive Optics observations of Neptune's ring system at 1.6 and 2.2 μm, taken with the 10-m W.M. Keck II telescope in July 2002 and October 2003. We recovered the full Adams and Le Verrier rings for the first time since the Voyager era (1989), and show that the overall appearance of these rings did not change much, except for the ring arcs. Both the location and intensity of all arcs changed drastically relative to trailing arc Fraternité, which has a mean orbital motion of 820.1118 ± 0.0001 deg/day, equal to that of Nicholson et al.'s (1995, Icarus 113, 295-330) solution 2. Our data suggest that all arcs may have decayed over the last decade, while Liberté, in 2003, may be on the verge of disappearing completely. The observed changes in the relative intensities and locations of all arcs further indicate that material is migrating between resonance sites; leading arc Courage, for example, has jumped ∼8°, or, when adopting Namouni and Porco's (2002, Nature 417, 45-47) CER (corotation eccentricity resonance) theory, it advanced by one full corotation potential maximum. Overall, our observations reveal a system that is surprisingly dynamic, and no comprehensive theory exists as of yet that can explain all the observed intricacies.  相似文献   

13.
BVI photometry of Triton and Proteus was derived from HST images taken in 1997. The VEGAMAG photometric technique was used. Triton was found to be brighter by a few percent than observations of the 1970's and 1980's, as expected due to the increasingly greater exposure of the bright south polar region. The leading side was also found to be brighter than the trailing side by 0.09 mag in all filters—50% larger than reported by Franz [Franz, O.G., 1981. Icarus 45, 602-606]. Contrary to our previous results [Pascu, D., et al., 1998. Bull. Am. Astron. Soc. 30, 1101], we found no episodic reddening. Our previous conclusions were based on an inaccurate early version of the Charge Transfer Efficiency (CTE) correction. The present result limits the start of the reddening event reported by Hicks and Buratti [Hicks, M.D., Buratti, B.J., 2004. Icarus 171, 210-218]. Our (B-V) result of 0.70±0.01 supports the global blueing described by Buratti et al. [Buratti, B.J., Goguen, J.D., Gibson, J., Mosher, J., 1994. Icarus 110, 303-314]. Our observations of July 1997 agree with the Voyager results and are among the bluest colors seen. We found Proteus somewhat brighter than earlier studies, but in good agreement with the recent value given by Karkoschka [Karkoschka, E., 2003. Icarus 162, 400-407]. A leading/trailing brightness asymmetry was detected for Proteus, with the leading side 0.1 mag brighter. The unique differences in action of the endogenic and exogenic processes on Triton and Proteus provides an opportunity to separate the endogenic and exogenic effects on Triton.  相似文献   

14.
Hubble Space Telescope (HST) Wide-Field Planetary Camera (WFPC2) observations at phase angles in the range α=0.26°-6.4° obtained at every opposition and near quadrature between October 1996 and December 2002 reveal the opposition effect of Enceladus. We present a photometric analysis of nearly 200 images obtained through the five broadband UVBRI filters (F336W, F439W, F555W, F675W, and F814W) and the F785LP and F1042M filters from which we generate mutually consistent solar and rotational phase curves. Our solar phase curves reveal a dramatic, sharp increase in the albedo (from 0.11 mag in the F675W filter to 0.17 mag in the F785LP filter) as phase angles decrease from 2° to 0.26°. A slight opposition effect is evident in data from the F1042M filter (λeff=1022 nm); however, the smallest phase angle currently available for observations from this filter is α=0.58°. With the addition of data from the F255W filter we demonstrate the wavelength dependence of the albedo of the trailing hemisphere from 275 to 1022 nm. Our rotation curves show that the trailing hemisphere is ∼0.06 mag brighter than the leading when observed at wavelengths between 338 and 868 nm and 0.11 mag brighter than the leading at 1022 nm. We have supplemented the phase curve from the F439W filter (λeff=434 nm) with Voyager clear filter (λeff=480 nm) observations made at larger phase angles (α=13°-43°) to produce a phase curve with the most extensive phase angle coverage possible to date. This newly expanded range of phase angles enhances the ability of the Hapke photometric model (Hapke B., 2002, Icarus 157, 523-534) to relate physical characteristics of the surface of Enceladus to the manner in which incident light is reflected from it. We present Hapke 2002 model fits to solar phase curves from each UVBRI filter as well as from the F785LP and F1042M filters. Geometric albedos derived from these model fits range from p=0.92±0.01 at 1022 nm to p=1.41±0.03 at 549 nm, necessitating an increase of about 20% from previously derived values. Our Hapke fits demonstrate that the opposition surge of Enceladus is best described by a model which combines both moderate shadow-hiding and narrow coherent backscattering components.  相似文献   

15.
We report an improved measurement of the rotational axis orientation of Asteroid (4) Vesta. By analyzing and combining all previous measurements using a limb-fitting technique from ground/HST data collected from 1983 to 2006, we derive a pole solution of (RA = 304.5°, Dec = 41.5°). Images of Vesta acquired with the Wide Field Camera 3 onboard the Hubble Space Telescope (HST) in February 2010 are combined with images from the Wide Field Planetary Camera 2 on HST obtained in 1994, 1996, and 2007 at similar spatial resolution and wavelengths to perform new measurements. Control point stereogrammetry returns a pole solution of (305.1°, 43.4°). An alternate method tracks surface features and fits their projected paths with ellipses to determine a great circle containing the pole for each HST observation. Combined, the four great circles yield a pole solution of (309.3°, 41.9°). These three solutions obtained with almost independent methods are within 3.5° of each other, suggesting a robust solution. Combining the results from all three techniques, we propose an improved value of the rotational axis of Vesta as RA = 305.8° ± 3.1°, Dec = 41.4° ± 1.5° (1-σ error). This new solution changes from (301°, 41°) reported by Thomas et al. (Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., Wells, E. [1997a]. Icarus 128, 88-94) by 3.6°, and from (306°, 38°) reported by Drummond and Christou (Drummond, J.D., Christou, J. [2008]. Icarus 197, 480-496) by 3.4°. It changes the obliquity of Vesta by up to ∼3°, but increases the Sun-centered RA of Vesta at equinox by ∼8°, and postpones the date of equinox by ∼35 days. The change of the pole position is less than the resolution of all previous images of Vesta, and should not change the main science conclusions of previous research about Vesta.  相似文献   

16.
Neptune was observed by the Infrared Space Observatory (ISO) Long-Wavelength Spectrometer (LWS) between 46 and 185 μm. At wavelengths between 50 and 110 μm the accuracy of these measurements is ?0.3 K. Observations of this planet made by the ISO Short-Wavelength Spectrometer between 28 and 44 μm were combined with the LWS data to determine a disk-averaged temperature profile and derive several physical quantities. The combined spectra are matched best by a He/(H2+He) mass ratio of 26.4+2.6−3.5%, reflecting a He molar fraction of 14.9+1.7−2.2%, assuming the molar fraction of CH4 to be 2% in the troposphere. This He abundance is consistent with one derived from analysis of joint Voyager-2 IRIS and radio occultation experiment data, a technique whose accuracy has recently been called into question. For a disk average, the para-H2 fraction is found to be no more than ∼1.5% different from its equilibrium value, and the N2 mixing ratio is probably less than 0.7%. The composite spectrum is best fit by invoking a CH4 ice condensate cloud. Using a Mie approximation to particle scattering and absorption, best-fit particle sizes lie between 15 and 40 μm. The composite spectra are relatively insensitive to the vertical distribution of the cloud, but the particle scale height must be greater than 5% of the gas scale height. The best models are consistent with an effective temperature for Neptune that is 59.5±0.6 K, a value slightly lower than derived by the Voyager IRIS experiment—possibly Neptune's mid- and far-infrared emission has changed during the seven years that lie between its encounter with Voyager 2 and the first spectra taken of this planet with ISO. The model spectra are also ostensibly lower than ground-based observations in the spectral range of 17-24 μm, but this discrepancy can be relieved by perturbing the temperature of the lower stratosphere where the LWS spectrum is not particularly sensitive, combined with the uncertainty in the absolute calibration of the ground-based measurements.  相似文献   

17.
We present an analysis of images of Saturn's moon Titan, obtained by the Voyager 1 spacecraft on November 8-12, 1980. Orange filter (590-640 nm) images were photometrically corrected and a longitudinal average removed from them, leaving residual images with up to 5% contrast, and dominated by surface reflectivity. The resultant map shows the same regions observed at 673 nm by the Hubble Space Telescope (HST). Many of the same albedo features are present in both datasets, despite the short wavelength (600 nm) of the Voyager 1 images. A very small apparent longitudinal offset over the 14 year observation interval places tight constraints on Titan's rotation, which appears essentially synchronous at 15.9458±0.0016 days (orbital period =15.945421±0.000005 days). The detectability of the surface at such short wavelengths puts constraints on the optical depth, which may be overestimated by some fractal models.  相似文献   

18.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

19.
The Galileo Probe sampled Jupiter's atmosphere at the edge of a 5-μm hot spot, where it found very little cloud opacity above the 700 mb level. Only τ=1-2 at λ=0.5 μm was inferred from Net Flux Radiometer observations (Sromovsky et al. 1998, J. Geophys. Res.103, 22,929-22,977), in seeming conflict with Chanover et al. (1997, Icarus128, 294-305) who inferred τ=6-8 above the 700 mb level (at λ∼0.9 μm) from 893-nm and 953-nm WFPC2 observations of a group of hot spots. Postulating a heterogeneous cloud structure is one way to resolve the conflict. We obtained a more satisfying resolution by reinterpretation of the HST observations with Probe-compatible assumptions about the vertical distribution of cloud particles. Assuming a physically thin upper (putative NH3) cloud with adjustable optical depth and effective pressure (peff<440 mb) and a physically thin midlevel (putative NH4SH) cloud with adjustable optical depth but a fixed pressure of 1.2 bars, we are able to fit WPFC2 observations with probe-consistent opacities in hot spot regions. With the same cloud pressures, but higher middle cloud opacities, we are even able to fit the visibly bright regions. Little variability is seen in the upper cloud. Best fits to October 1995 WFPC2 observations in dark regions (5-μm hot spots) yielded τupper=1.3-1.9 at 0.9 μm and peff=240 mb−270 mb, while in visibly bright regions between hot spots we obtained τupper=1.6-2.2 and peff=250 mb−290 mb. May 1996 observations yielded slightly higher values of τupper (1.8-2.3 and 2.0-2.8) and peff (250 mb−310 mb and 265 mb−320 mb). We found that the most important variable parameter is the opacity of the middle cloud, which ra nged from τ=1, 2 in dark regions, to τ=8-30 in bright regions. From limb darkening characteristics, we inferred a wavelength-dependent haze opacity ranging from 0.2±0.05 at 660 nm to 0.35±0.05 at 953 nm, and an effective haze pressure near 120 mb. We did not find it necessary to use low single scattering albedos that require effective imaginary indices, that are several orders of magnitude larger than the values of the main putative cloud components.  相似文献   

20.
Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune’s stratosphere in October 2007, LS = 275.4° just past Neptune’s southern summer solstice (LS = 270°). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the ν4 band of methane to retrieve detailed information on Neptune’s stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 ± 0.8, 155.0 ± 0.9, and 123.8 ± 0.8 K at the 7.0 × 10−3-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at −28° latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at −70° latitude. However, a meridionally constant VMR of at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40 K at 7 × 10−3 mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement.We have also retrieved observations of C2H4 emission from Neptune’s stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, LS = 266°. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5° of LS later, the seasonal equivalent of 9.5 Earth days within Earth’s seasonal cycle), we infer a C2H4 VMR of at 1.5 × 10−3 mbar, a value that is 3.25 times that predicted by global-average photochemical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号