首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The graft copolymerization of acrylic acid (AA) and 2‐acrylamido 2‐methylpropane sulfonic acid (AASO3H) onto cellulose, in the presence or absence of crosslinking agent N,N′‐methylene bisacrylamide (NMBA), by using different concentrations of ceric ammonium nitrate (CAN) initiator in aqueous nitric acid solution at either 5 or 30°C was investigated. To investigate the effect of pretreatment of cellulose on the copolymerization, before some grafting reactions cellulose was pretreated with either 2 or 20 wt % NaOH solutions or heated in distilled water/aqueous nitric acid (2.5 × 10?3 M) at 55°C. To determine how the excess of initiator affects the grafting and homopolymerization, separate reactions were carried out by removing the excess of ceric ions by filtration of the mixture of initiator solution and cellulose before the monomer addition. Extraction‐purified products were characterized by grafting percentage and equilibrium swelling capacity. Pretreatment of cellulose with NaOH solutions decreased the grafting percentage of copolymers. In the case of AA–AASO3H mixtures, nonpretreated cellulose gave a higher grafting percentage than NaOH‐pretreated cellulose. Filtration also lowered the grafting of AA on the cellulose in the cases of pretreatment with either water or nitric acid. Copolymers with the highest grafting percentage (64.8%) and equilibrium swelling value (105 g H2O/g copolymer) were obtained in grafting reactions carried out in the presence of NMBA at 5°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2267–2272, 2001  相似文献   

2.
Photo‐induced graft copolymerization of acrylonitrile (AN) onto sodium salt of partially carboxymethylated guar gum (Na‐PCMGG, = 0.291) was carried out in an aqueous medium using ceric ammonium nitrate (CAN) as photo‐initiator to synthesize a novel graft copolymer, Na‐PCMGG‐g‐PAN, which may find potential application as a superabsorbent hydrogel. Studying the influence of concentrations of photo‐initiator (CAN), nitric acid, monomer (AN) as well as reaction time, temperature, and amount of substrate on the grafting yields, the reaction conditions for optimum grafting were evaluated. Maximum values of the grafting yields achieved were %G = 285.77 and %GE = 70.76 at optimized conditions. The proposed kinetic scheme could explain very well the experimental results. The influence of different kind of acids on the grafting yields was also studied. Grafting process was confirmed with the help of FTIR, thermal (TGA/DSC), and SEM techniques. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41371.  相似文献   

3.
The graft copolymerization of methyl methacrylate (MMA) onto sago starch was carried out in aqueous media by different initiators of ceric ammonium nitrate (CAN) and potassium persulfate (PPS) and under a nitrogen gas atmosphere. Using CAN as an initiator, the maximum percentage of grafting (%G) was ascertained to be 246% at the following optimum conditions: a 70°C reaction temperature, a 2‐h reaction period, 2.0 mmol of CAN, 0.4 mmol of nitric acid, and 141 mmol of MMA. The maximum %G achieved with PPS as the initiator was 90%. The optimum conditions were a 50°C reaction temperature, a 1.5‐h reaction period, 47 mmol of monomer, and 1.82 mmol of PPS. The grafting of MMA onto sago starch was confirmed by the IR spectra of pure sago starch, MMA, and MMA grafted sago starch. This material may have application as a biodegradable plastic. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1375–1381, 2001  相似文献   

4.
Graft copolymerization of acrylonitrile onto sago starch was carried out by a free radical initiating process in which the ceric ion (Ce 4+ ) was used as an initiator. The reaction conditions significantly influence the graft copolymerization. The percentage of grafting, grafting efficiency and rate of grafting were all dependent on the concentration of ceric ammonium nitrate (CAN), acrylonitrile (AN), sago starch (AGU, anhydro glucose unit), mineral acid (H 2 SO 4 ) and the reaction temperature and period. The optimum yield was obtained when the concentrations of CAN, AN, AGU and H 2 SO 4 were used at 9.61×10 ?3 , 0.653, 0.152 and 0.187 mol L ?1 , respectively. The optimum temperature and reaction period were 50°C and 90 min, respectively. The rate of graft copolymerization was examined using the experimental results and the reaction mechanism. The polya1crylonitrile grafted sago starch was characterized by using FT-IR spectroscopy, DSC and SEM analysis.  相似文献   

5.
An adsorbent for CO2 capture was prepared by the grafting of acrylonitrile (AN) onto viscose fibers (VFs); this was followed by amination with triethylene tetramine (TETA). The effects of the reaction conditions, such as the concentrations of the monomer, initiator, and nitric acid, on the grafting degree and grafting efficiency were studied. The adsorption performance of the adsorbent for CO2 was evaluated by fixed‐bed adsorption. The highest dynamic adsorption capacity of the adsorbent for CO2 was 4.35 mmol/g when the amine content of the adsorbent VF–AN–TETA reached 13.21 mmol/g. Compared with the polypropylene (PP)‐fiber‐based adsorbent (PP–AN–TETA), VF–AN–TETA with hydroxyl groups on the fibers facilitated the diffusion of CO2 and water and led to a higher CO2 adsorption capacity than that of PP–AN–TETA. The VF–AN–TETA adsorbent also showed good regeneration performance: its CO2 adsorption capacity could still retain almost the same capacity as the fresh adsorbent after 10 adsorption–desorption cycles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42840.  相似文献   

6.
In an attempt to overcome the problem of polymerization of vinyl monomers in presence of oxygen, polymerization was done by using some plant gums. The effect of some plant gums were studied on the graft copolymerization of acrylonitrile (AN) on to poly(vinyl alcohol) using ceric ammonium nitrate (CAN) as initiator in presence of air. Percent of grafting was determined as a function of nitric acid, concentration of monomer, time, and temperature. The rate of polymerization and maximum grafting (151%) were high compared with those in absence of the gum both in air of even in an inert atmosphere. Thus, it was definitely observed that the graft copolymerization is affected by the gum. From the differential scanning calorimetric (DSC) studies the glass‐transition temperature Tg of polyacrylonitrile (PAN) is found to be 56°C. Thermal stabilities were checked by thermogravimetric analysis (TGA) and this indicated that the grafted copolymers were resistant to moisture absorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1586–1590, 2000  相似文献   

7.
Graft copolymers were synthesized by graft copolymerization of butyl acrylate (BA) onto sodium salt of partially carboxymethylated starch (Na‐PCMS). Ceric ammonium nitrate (CAN), a redox initiator, was used for initiation of graft copolymerization reaction. All the experiments were run with Na‐PCMS having degree of substitution, DS = 0.35. The grafting reaction was characterized by parameters such as % total conversion (%Ct), % grafting (%G), % grafting efficiency (%GE), and % add‐on. Graft copolymers were characterized by infrared spectral analysis and scanning electron microscopy. Variables affecting graft copolymerization reaction such as nitric acid concentration, reaction time, reaction temperature, and ceric ion concentration were investigated. The results revealed that 0.3M CAN as initiator, 0.3M HNO3, with reaction time 4–4.5 h at 25–30°C were found as suitable parameters for maximum yield of graft copolymerization reaction. © 2006 Wiley Periodicals, Inc. JAppl Polym Sci 102: 3334–3340, 2006  相似文献   

8.
Homogeneous graft copolymerization of acrylonitrile (AN) monomer onto high α‐cellulose was investigated in a lithium chloride/N,N‐dimethyl acetamide (DMAc/LiCl) solvent system. Benzoyl peroxide (BPO) and azobisisobutyronitrile (AIBN) were used as radical initiators. By varying temperature, time, and monomer concentrations in grafting reactions, the optimum conditions for both initiator systems were fixed. The graft yield for the AN–BPO system was higher than that for the AN–AIBN system. The optimum conditions of reactions were at temperatures of 70 and 60°C with initiator concentrations of 0.4% (0.36 mmol) and 2% (1.24 mmol) for the AN–AIBN and AN–BPO systems, respectively, at a monomer concentration of 5% (14.1 mmol) solution. The number of grafts per cellulose chain was in the range from 2.2 to 1.1 for AN–BPO and 0.5 to 2.1 for the AN–AIBN system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 630–637, 2003  相似文献   

9.
The preparation of carboxymethyl (CM)–Cassia tora gum (CTG) with monochloroacetic acid and sodium hydroxide was investigated under different reaction conditions. The carboxymethylation reaction was studied with respect to the degree of substitution of CM–CTG. The variables studied were the concentration of reactants, methanol–water ratio (solvent), reaction time, and reaction temperature. Carboxymethylation of CTG increased its solubility in cold water and the stability of its paste to microorganisms. Regardless of the degree of substitution of these products, their aqueous solutions were characterized by non‐Newtonian pseudoplastic behavior. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3216–3219, 2003  相似文献   

10.
Acrylonitrile (AN) was graft polymerized onto unmodified cornstarch by a continuous reactive extrusion process and, for comparison, by a typical batch reaction process. The effect of AN/starch weight ratios, level of ceric ammonium nitrate (CAN) initiator, starch in water concentration, reaction temperature, reaction time, and extruder screw speed in the reactive extrusion process was studied. Add-on, reaction efficiency, grafting frequency, weight average molecular weight (MW) and MW distribution of polyacrylonitrile (PAN), and water absorbency of the saponified copolymers were determined. Processing times in the twin-screw extruder (ZSK) were 2–3 min, and total reaction time was about 7 min before reaction of the extruded material was terminated, compared to a reaction time of 2 h used in the typical batch procedure. The continuous reactive extrusion process was found to be a rapid and efficient means of preparing St-g-PAN with high add-on (% PAN of the grafted product). For example, 42% add-on was achieved within the 7-min reaction period using an AN/starch weight ratio of 1.0 (3.5% CAN, starch weight basis), as compared to 38–49% for the 2-h batch process (0.75–1.5 AN/starch ratio). Percentages of homopolymer of the copolymers were low for both extrusion and batch processes. Grafting frequencies were substantially higher while MWs were significantly lower for grafts from the extrusion process. Water absorbency of the saponified St–g–PAN products was somewhat greater for the products prepared by the batch process.  相似文献   

11.
The poly(vinyl alcohol)–acrylonitrile–2-hydroxy ethyl methacrylate (PVA–AN–HEMA) grafted latex membrane was synthesized by grafting AN and HEMA mixture on PVA in aqueous solution. The ceric ammonium nitric in nitric acid was was used as a catalyst. This membrane has well-balanced composition of hydrophilic and hydrophobic components and was proved by transition electron microscopy to process microstructure between continuous and disperse phases. The permeability of alcohol–water solution and separativity of phenol–water solution through this PVA–AN–HEMA membrane were studied. It was found that the permeation rate for aqueous solution as as alcohol–water was greater than that for pure water, and the separativity of phenol–water solution by pervaporation increased as the amount of PHEMA increased.  相似文献   

12.
The primary objective of modifying cotton fabric was to impart bactericidal properties to attract various fields such as defence, space and textile industrial applications. Chemically initiated graft copolymerization of 4-vinyl pyridine (4-VP) and acrylonitrile (AN) onto cotton fabric was carried out using ceric ammonium nitrate as a redox initiator. Optimum conditions pertaining to maximum percentage of grafting were evaluated as a function of concentration of initiator [CAN], concentration of nitric acid, monomer concentration, water, temperature and reaction time. Maximum grafting of 4-VP (51.63%) and AN (69.23%) was obtained respectively at optimum [ \textCAN ] = 2.738 ×10 - 2 \left[ {\text{CAN}} \right] = 2.738 \times {10^{ - 2}} and 2.19 × 10−2 moles/L, [ 4 - \textVP ] = 47.55 ×10 - 22\textmoles/\textL \left[ {4 - {\text{VP}}} \right] = 47.55 \times {10^{ - 22}}{\text{moles}}/{\text{L}} , [ \textAN ] = 18.85 ×10 - 22\textmoles/\textL \left[ {\text{AN}} \right] = 18.85 \times {10^{ - 22}}{\text{moles}}/{\text{L}} , [ \textHN\textO3 ] = 11.9 ×10 - 2 \left[ {{\text{HN}}{{\text{O}}_3}} \right] = 11.9 \times {10^{ - 2}} and 89.5 × 10−22 moles/L in 20 and 25 ml of water at an optimum temperature 70 °C and 60 °C with in 180 and 120 min. Antibacterial properties were induced into the modified cotton fabric by treating the grafted fabric with benzyl chloride. The grafted and quaternized copolymer were characterized by FTIR and Thermogravimetrical analysis. The bactericidal action of cotton fabric was tested by filtration test and it was observed that fabric grafted with 4-VP was more effective and efficient antibacterial as compared to AN grafted cotton sample.  相似文献   

13.
Graft copolymerization of isoprene (IP) and acrylonitrile (AN) onto gelatinized starch (S) and cationic starch having quaternary amine functionality through cerium(IV) initiation gave grafted side chains of poly(IP–co–AN). Grafts of various compositions are obtained by controlling the amounts and ratios of monomers added to starch. IP alone does not homograft onto gelatinized starch at 25° or 50°C by cerium(IV) initiation and requires the presence of an “initiator–monomer” such as AN to obtain copolymer side chains. Although cografting of IP and AN onto starch depends on AN to initiate radical chains, the ratio employed of the two monomers is critical for graft polymerization to occur. For example, at a molar ratio of IP to AN of 1 or greater, little polymer was produced; at molar ratios in the range of 0.4 to 0.67, considerable amounts of polymer were produced; and at a molar ratio of 0.13 or less, polymerization of AN was greatly retarded. Concentration of HNO3 in the cerium(IV) reagent and reaction temperature also influence the grafting reaction. Lower HNO3 concentrations favor grafting at 50°C, while higher acid concentrations favor grafting at 25°C. Starch graft reaction mixtures were sonified at 20 kHz to form latexes that air dry to clear pliable films. Poly(IP–co–AN) obtained by acid hydrolysis of the starch portion of the grafts failed to dissolve in either dimethylformamide or benzene, thus indicating presence of crosslinks. S–g–poly(IP–co–AN), having about one third starch and grafted side chains averaging about 2 parts polymerized IP per part of polymerized AN, was masticated on steel rolls at 100°C to a tough pliable film which was subsequently vulcanized to a rubber.  相似文献   

14.
Graft copolymerization of methyl methacrylate (MMA) onto oil palm empty fruit bunch fiber (OPEFB) was successfully carried out in aqueous medium using hydrogen peroxide as an initiator. Results from the investigation of the optimum conditions for grafting are presented. Maximum percentage of grafting was achieved when the amount of initiator, cocatalyst, and nitric acid were 5.877 × 10?3 mol, 2.63 × 10?4 mol, and 3.24 × 10?3 mol, respectively. The optimum reaction temperature was 50°C and the reaction period was 120 min. The highest percentage of grafting and grafting efficiency were 220 and 47%, respectively, under optimum conditions. The grafted copolymer was characterized by FTIR spectroscopy and scanning electron microscopy. The presence of a band at 1730 cm?1 provides strong evidence of grafting. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2233–2238, 2003  相似文献   

15.
A large number of cyanide functional groups were introduced onto the carbohydrate biopolymer tragacanth gum to yield hydrophobic graft copolymer, tragacanth gum-g-polyacrylonitrile. Thus, graft copolymerization of monomer acrylonitrile (AN) was carried out under nitrogen atmosphere using ceric ammonium nitrate (CAN) as an initiator. The highest percentage of grafting (543%) and the lowest homopolymer content (10%) were achieved through a systematic optimization of the polymerization variables, including reaction time, temperature, and concentration of CAN, AN and the gum. Evidence of grafting was examined by comparing FTIR spectra. The optimally prepared tragacanth gum-g-polyacrylonitrile copolymer was also characterized thermally and morphologically. It was hydrolyzed in alkaline medium to achieve an in-situ crosslinked hybrid network with ultra high water absorption capacity (swelling in water, 30700%; swelling in saline, 6550%). The swelling characteristic of the semi-synthetic super-absorbent hydrogel was preliminarily investigated. The chemical structure, thermal characteristics and morphology of the hydrogel hybrid product were briefly studied.  相似文献   

16.
Chitin was extracted from shrimp shells and then deacetylated to obtain chitosan. The degree of deacetylation of the chitosan was determined to be 0.76 using pH‐metric titration. A large number of cyanide functional groups were introduced onto chitosan by grafting with polyacrylonitrile as an efficient way of modification. The graft copolymerization reactions were carried out under argon atmosphere in a homogeneous aqueous phase (containing a small portion of acetic acid) by using ceric ammonium nitrate as an initiator. Evidence of grafting was obtained by comparing FTIR spectra of chitosan and the graft copolymer as well as solubility characteristics of the products. The synthetic conditions were systematically optimized through studying the influential factors, including temperature and concentrations of the initiator, acrylonitrile monomer (AN), acetic acid, and chitosan. The effect of individual factors was investigated by calculating and monitoring the variations of the grafting parameters [i.e., grafting ratio (Gr), grafting efficiency (Ge), add‐on value (Ad), homopolymer content (Hp), and total conversion (Ct)]. Under optimum conditions, the grafting parameters were achieved as 535, 98, 81, 2, and 102%, respectively. A mechanism for the free‐radical grafting was proposed. As empirical rates of polymerization and graft copolymerization were plotted against [AN] and [Ce4+]1/2, the experimental kinetic data displayed a good match to a reported rate statement. The overall activation energy for the graft copolymerization was determined to be 44.9 kJ/mol. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2048–2054, 2003  相似文献   

17.
In this study, grafting of itaconic acid (IA) onto sodium alginate (NaAlg) using cerium(IV) ammonium nitrate/nitric acid (CAN/HNO3) as redox system was carried out by free radical polymerization. The structures of the grafted copolymers (NaAlg-g-PIA) were characterized by ATR-FTIR spectroscopy, NMR spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The reaction conditions for maximum grafting were optimized by varying the reaction time, temperature, percentage of sodium alginate, monomer, initiator, and nitric acid concentrations. The optimum reaction conditions were obtained with reaction time of 5 h, reaction temperature of 30 °C, IA concentration of 0.92 M, CAN concentration of 1.368 × 10?1 M, HNO3 concentration of 0.094 M and percentage of NaAlg 0.5 g/dL. The solubility test of NaAlg-g-PIA was also investigated using solvents. The results indicate that prepared graft copolymer was non-soluble in the various solvents, while it was soluble only in saturated solution of NaOH and promising as an adsorbent.  相似文献   

18.
The graft copolymerization of acrylonitrile (AN) onto a styrene-maleic acid copolymer (SY-MAc) with ceric ammonium nitrate (CAN) as a redox initiator in an aqueous medium has been studied. The effects of various reaction parameters, including reaction time and temperature, concentrations of initiator, nitric acid, and monomer, on the grafting yields and the rates of polymerization (Rp), graft copolymerization (Rg), and homopolymerization (Rh) were studied systematically. The results are discussed. The kinetic scheme of free-radical graft copolymerization has been proposed and the equations relating the values of Rp, Rg, and Rh are also suggested. The experimental results are found to be in good agreement with the proposed kinetic scheme. The activation energies of graft copolymerization and total polymerization are calculated. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
To introduce functional moieties to Tefzel film, a copolymer of tetrafluoroethylene and ethylene, graft copolymerization of vinyl monomers such as acrylonitrile (AN) and methacrylonitrile (MAN) was attempted by a preirradiation method in aqueous medium. Optimum conditions for obtaining the maximum percentage of grafting have been evaluated for both monomers. Maximum grafting of AN (52.2%) and MAN (77.7%) is obtained at a total dose of 3.14 and 2.69 × 104 Gy, respectively, using [AN] = 3.018 mol/L and [MAN] = 1.177 mol/L in 10 mL of water. The effect of aliphatic alcohols of varying chain length, such as methanol, ethanol, isopropanol, n‐butanol, and cyclohexanol, on percentage add‐on of AN and MAN has also been studied. It has been found that all the alcohols decreased the percentage of grafting. Characterization of Tefzel and grafted Tefzel films has been carried out by IR spectroscopy and thermogravimetric analysis. Grafted Tefzel film has been found to have improved thermal resistance. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1171–1178, 2000  相似文献   

20.
Summary In order to study the role of -SH group of wool in graft copolymerization, an attempt has been made to study grafting of acrylic acid (AAc) onto reduced wool in aqueous medium using ceric ammonium nitrate (CAN) as redox initiator. HNO3 was found to catalyze the graft copolymerization. Reduction of wool was effected with thioglycolic acid (TGA) in aqueous medium. Percentage of grafting was determined as a function of concentration of (i) CAN, (ii) vinyl monomer (AAc), (iii) nitric acid, (iv) time and (v) temperature. Under optimum conditions, poly-(acrylic acid) was grafted to the reduced wool to the extent of 9.14%, the unreduced wool under optimum conditions afforded maximum grafting of poly(AAc) to the extent of 12.24%. Reduction of wool does not promote grafting of AAc in the presence of CAN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号