首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
为研究库水位变动和降雨共同作用对心墙坝上下游坝坡稳定性的影响,考虑渗流场和应力场的耦合作用,基于非饱和渗流原理,考虑不同降雨强度、不同降雨类型(4种)及不同库水位升降速率,对心墙坝遭遇库水位变动和降雨时的渗流和坝坡稳定性情况进行有限元模拟。结果表明,水位变动速率主要影响上下游坝坡安全系数趋于稳定的时间;降雨类型和降雨强度是影响心墙坝下游坝坡安全系数的主要因素,但对上游坝坡的安全系数变化影响较小;在下游坝坡安全系数〖JP2〗趋于稳定时,各降雨类型的安全系数大小为前锋型≥中锋型>〖JP〗平均型>后锋型;无论是水位上升阶段还是水位下降阶段,降雨都会降低下游坝坡的安全系数。该研究结果为心墙坝遭遇极端工况条件时进行风险分析和应急管理提供了参考依据。  相似文献   

2.
张珂峰 《水电能源科学》2018,36(11):139-143
为研究在库水位和降雨联合作用下某边坡体的渗透特性及相应的稳定性,根据非饱和渗流原理,利用有限元软件Geo-slope模拟了某边坡体在降雨和库水位骤降工况下的孔压变化及安全系数变化规律。结果表明,库水位下降速率越大,孔压变化越大,最小安全系数越小;静库水位越高,边坡体下部孔压越大,安全系数越低;降雨发生在库水位下降开始时刻对于上部浅层边坡和深层边坡来说较为危险,而降雨发生在库水位下降结束时刻对于下部浅层边坡来说较为危险;边坡的失稳先发生于边坡体的下部浅层,然后引起深层的整体滑动。研究结果为边坡工程治理提供了理论依据。  相似文献   

3.
邱鹏 《水电能源科学》2019,37(11):104-108
为研究不同面板缺陷联合库水位变动(库水位高程、库水位骤降速率、缺陷高程、缺陷尺寸)对面板堆石坝渗透稳定性的影响,以浙江省临海市某面板堆石坝为例,利用岩土软件Geostudio的Seep/w与Slope/w模块对含不同缺陷及不同库水位情况下的面板堆石坝进行了有限元分析,得到了渗漏量、面板后浸润线高程及上下游坝坡的安全系数变化规律。计算结果表明,库水位高程越高,面板坝坝后浸润线高程越高,坝体的渗漏量越大,上游坝坡安全系数越大,下游坝坡安全系数越小;当库水位高程低于缺陷高程时,完整面板坝与含缺陷面板坝的渗透稳定特性一致,当库水位高程大于缺陷高程时,库水位水平越高,面板坝后的浸润线高程越高,同时渗漏量也越大;库水位骤降下面板坝内部浸润线呈现先疏后密的规律,在库水位骤降经过缺陷高程时,坝体内部浸润线有个突然下降的过程;一旦面板发生缺陷,面板坝后的浸润线及渗漏量会出现较大的增长,安全系数下降幅度也较大,缺陷高程越高,面板坝后浸润线高程及渗漏量越大,安全系数也越小;缺陷尺寸越大,面板后的浸润线高程及渗漏量也越大,安全系数越小,但变化幅度较小,同时,上游坝坡的安全系数整体上要大于下游坝坡。  相似文献   

4.
王刚 《水电能源科学》2011,29(11):77-79,69
针对库水位变化和降雨会使坝坡稳定性分析更为复杂的问题,基于非饱和渗流理论,借助GEO STUDIO软件对某土石坝进行数值模拟,研究了该坝在水位骤升、水位骤降及降雨情况下坝体内的渗流情 况,以极限平衡原理和MorgensternPrice条分法为基础分析了坝坡产生滑移的最小安全系数变化规律 。结果表明,复杂水力条件下不利于坝坡的稳定性,且坝坡安全系数变化呈现出一定的规律性。  相似文献   

5.
降雨为影响尾矿坝渗流的一个重要因素,根据多年降雨资料,利用P-Ⅲ型分布描述降雨重现期,模拟得到坝坡的浸润线分布,结合改进Green-Ampt入渗模型得到坝坡湿润锋的发展过程,并以集安某尾矿坝为例,探讨了降雨重现期对尾矿坝坡顶、坡脚处孔压分布、浸润线变化及坝体稳定性的影响。结果表明,坝体孔压变幅与降雨重现期呈正相关;在堆积坝顶部浸润线先上升后下降,而在坡脚处浸润线不断上升;降雨重现期越长,坝体安全系数越小,降雨结束后安全系数的回升速率远小于暴雨期间的下降速率;坝体可靠度指标随降雨不断减小,停雨后有明显的回升,与安全系数的变化规律不一致。  相似文献   

6.
以云南省鱼龙水库为例,基于达西定律与渗流理论,并结合Geo-Studio有限元模块分析了上游正常蓄水位分别在10、15、20d内降落至死水位时坝体内部渗流场及临水坡面安全系数变化情况。结果表明,库水位在10、15、20d由正常蓄水位降落至死水位时,20d降落工况的坝体内部渗流场对坝坡稳定影响最小,坝体内部浸润线的降落速率与库水位下降速率密切相关,其浸润线分布密集变化缓慢,且该工况安全稳定系数最大为1.80,说明坝体内部渗流场变化越缓慢,土石坝坝坡安全稳定性越好。  相似文献   

7.
针对目前面板缺陷下的面板坝渗流特性及静动力稳定性研究较少的问题,以方溪面板坝为例,利用Geo-studio软件建立了面板及缺陷有限元计算模型,数值模拟了不同缺陷情况及不同库水位情况下的面板坝动静力渗透稳定性,得到了坝体内部浸润线变化及坝体上下游的静动力安全系数变化规律。计算结果表明,缺陷的产生使面板处出现了渗漏通道,较完整面板来说大大抬升了面板坝内部的浸润线,主要浸润线抬升部位在靠近面板处,在下游坝坡处浸润线区别则较小;缺陷尺寸越大且缺陷高程越高,浸润线的高程越高,坝体渗漏量越大,但缺陷尺寸的影响小于缺陷高程的影响;上游坝坡的静力安全系数整体上随库水位的升高而上升,下游坝坡则相反。库水位水平高于缺陷高程时,缺陷高程越高,缺陷尺寸越大,安全系数则越低,同时上游坝坡的静力安全系数大于下游坝坡的静力安全系数;缺陷面板遇上地震工况时,上下游坝坡整体安全系数明显下降,下游坝坡在部分工况下处于失稳状态。研究成果对于面板坝灾害防治有一定积极意义。  相似文献   

8.
针对库水位+降雨条件下的边坡渗透稳定性研究缺少定量化敏感性分析的问题,利用Geostudio软件模拟了三峡库区某边坡在库水位骤降及库水位骤降+降雨条件下的渗透稳定性规律,同时基于灰色关联度理论对不同边坡物理力学参数进行了稳定性的定量化敏感性分析。结果表明,库水位骤降条件下不同监测点的孔压均随时间增加逐渐下降,在叠加降雨过程时孔压有一个"突升";库水位骤降下的安全系数先减小后增大,降雨发生在第18~20d时安全系数最小;粘聚力c、内摩擦角φ、饱和渗透系数k对边坡稳定性影响较大,而重度γ对边坡稳定性的影响相对较小。  相似文献   

9.
为研究某水库均质土石坝库水位降落作用下均质土石坝瞬态流场特性及其对坝坡稳定性的影响,基于饱和-非饱和非稳定渗流理论及极限平衡法,应用GeoStudio有限元分析软件中的SEEP/W及SLOPE/W模块进行库水位降落作用下的瞬态渗流场及稳定性数值模拟分析,探讨了不同速率库水位降落作用下的坝体内部渗流场及坝坡稳定性变化规律。结果表明,考虑非饱和渗流时,在库水位降落作用下,坝体浸润线变化滞后于库水位降落,且库水位降落速率越大,滞后现象越严重,上游坝坡内部形成倒流现象,产生指向坝坡外部的渗透压力;库水位降落作用下,坝坡稳定性呈现"降低—回升—平缓"的变化趋势,库水位降落速率越大,坝坡稳定性系数最小值越低,对坝坡稳定性越不利。研究结果可为土石坝边坡稳定性评价提供参考。  相似文献   

10.
为探究不同类型前期降雨下涩草湖尾矿坝的渗流稳定性变化差异较大的问题,利用Geostudio软件对涩草湖尾矿坝进行了数值模拟,得到了不同表层、纵深孔压及安全系数变化规律。结果表明,前期降雨过程中表层孔压不断升高,而在前期降雨接近结束时孔压则逐渐降低或增速减缓,短历时、强降雨下主降雨过程中,孔压有个突然升高的过程;前期降雨条件下,尾矿坝安全系数呈持续下降的规律,在主降雨过程中,安全系数降幅更大,最终安全系数降幅逐渐减小并最终趋于稳定。不同类型前期降雨影响了涩草湖尾矿坝的长期安全稳定性的规律。  相似文献   

11.
林呀 《水电能源科学》2019,37(12):103-107
鉴于软弱夹层物理力学参数的空间变异性对降雨条件下边坡的渗流特性、稳定性及失效概率的影响,利用Geostudio软件中的SEEP/W和SLOPE/W模块,分析了不同类型降雨条件下含软弱夹层边坡的不同监测面的孔隙水压力变化、体积含水率变化、确定性安全系数变化及失效概率。结果表明,边坡上部孔压与体积含水率在一定高程内保持不变,而在深部呈线性增大,下部孔压则呈持续线性增大趋势,在软弱夹层处孔压与体积含水率呈现突变,不同类型降雨影响了边坡表层孔压的变化幅度,在停雨后趋于一致。安全系数总体上呈先下降后上升的规律,在停雨时刻安全系数达最小值,后锋型降雨对边坡安全系数影响最大,其次是平均型降雨,再次是中锋型降雨,最后是前锋型降雨。不同类型降雨(平均型降雨,前锋型降雨,中锋型降雨及后锋型降雨)的失效概率分别为8.3%、9.1%、4.2%、3.6%,可见不同类型降雨条件下含软弱夹层边坡失效概率排序为前锋型降雨平均型降雨中锋型降雨后锋型降雨。  相似文献   

12.
降雨类型对浅层深层滑坡渗流及稳定性的影响   总被引:1,自引:0,他引:1  
为研究不同降雨类型对浅层及深层滑动面渗流特性及边坡稳定性的影响,采用有限元分析软件Geo-slope中的Seep/w和Slope/w模块,分析了相同降雨量不同降雨模式(平均型、前锋型、中锋型、后锋型)下浅层及深层体积含水率、孔压变化规律,得出了其安全系数随时间的变化曲线。结果表明,降雨期间边坡表面体积含水率增大至饱和,孔压趋向于0,停雨后边坡上部体积含水率及孔压逐渐减小,而坡脚处几乎不变,不同降雨模式影响了土体含水率及孔压的分布;下部浅层滑动面安全系数变幅大于上部浅层滑动面,深层滑动面安全系数变化滞后于降雨;平均型降雨对于深层滑动面安全系数影响最大,而后锋型降雨对于浅层滑动面安全系数影响最大。研究结果为边坡滑坡机理的认识及滑坡治理提供了参考。  相似文献   

13.
邵翎 《水电能源科学》2013,31(6):120-121,152
为同时考虑粘土心墙堆石坝渗流场和应力场耦合作用,以海马箐水库工程粘土心墙堆石坝为例,采用有限单元法计算了正常蓄水位时坝体位移、应力特性及渗流时坝体边坡稳定性。结果表明,大坝在正常蓄水位下不会出现渗透破坏,心墙坝的应力〖CD1〗应变符合一般规律,坝体的应力和变形性态基本良好;在稳定渗流作用下,上、下游坝坡稳定,抗滑稳定安全系数均满足规范要求。  相似文献   

14.
针对某水电站蓄水后对坝址上游右岸堆积体边坡稳定性影响的问题,根据非饱和土体瞬态有限元渗流控制方程构建了堆积体边坡二维计算模型,再利用GeoStudio软件中的SEEP模块计算了不同库水位升降速率、不同边坡渗透系数条件下边坡内的渗流场分布规律,再采用摩根斯坦—普莱斯极限平衡法计算各瞬态渗流场下最危险滑带的安全系数。结果表明,不同库水位上升速率及渗透系数时随库水位的上升边坡安全系数增大,不同库水位下降速率及渗透系数时随库水位的下降边坡安全系数减小。  相似文献   

15.
为研究水位骤变条件下河流崩岸的形成机理,结合现场调研及室内模型试验,分析了水位骤变条件下河流崩岸过程及孔隙水压力的变化规律。结果表明,在水位上升过程中,水土结合部位易产生裂缝,并不断拓展形成贯穿性裂缝,影响岸坡结构完整性,同时局部区域产生坍塌现象形成临空面,为后续坡体大规模坍塌提供条件;水位骤降后,由于水体惯性牵引,坡脚掏空,失去支撑,坡体发生整体下滑(由试验前的45°坍塌成31°),产生条崩现象;在库区水位骤降时,坡体内孔隙水压的消散速度低于坡前水位骤降速度,土体内外形成较大的水压力梯度(孔隙水压力),进而诱发大规模崩岸。揭示的河流崩岸内在机制,对于库岸安全管理具有较大的参考价值与实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号