首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of ultrasonic oscillations on die pressure, productivity of extrusion, melt viscosity and melt fracture of linear low density polyethylene (LLDPE) as well as their mechanism of action were studied in a special ultrasonic oscillation extrusion system developed in our Laboratory. The experimental results showed that, in the presence of ultrasonic oscillations, the melt fracture or surface distortion of LLDPE extrudate is inhibited or disappears. The surface appearance of the LLDPE extrudate was greatly improved. The productivity of LLDPE extrudate was increased in the presence of ultrasonic oscillations. The die pressure, melt viscosity and flow activation energy of LLDPE decreased with the rise in ultrasonic intensity. The shear sensitivity of LLDPE melt viscosity decreased due to the increase of its power law index in the presence of ultrasonic oscillations. Inducing ultrasonic oscillations into LLDPE melt greatly improved its processability. A possible mechanism for the improved processibility is proposed. © 2003 Society of Chemical Industry  相似文献   

2.
The influences of ultrasonic oscillations on rheological behavior and mechanical properties of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE)/low‐density polyethylene (LDPE) blends were investigated. The experimental results showed that the presence of ultrasonic oscillations can increase the extrusion productivity of mLLDPE/LDPE blends and decrease their die pressure and melt viscosity during extrusion. Incorporation of LDPE increases the critical shear rate for sharkskin formation of extrudate, crystallinity, and mechanical properties of mLLDPE. The processing behavior and mechanical properties of mLLDPE/LDPE blends were further improved in the presence of ultrasonic oscillations during extrusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2522–2527, 2004  相似文献   

3.
The effects of ultrasonic oscillations on the die pressure, productivity of extrusion, melt apparent viscosity, melt surface appearance, and die swell of novel propylene‐based plastomers were studied in a specially designed ultrasonic oscillations extrusion system developed in our laboratory. The effects of ultrasonic oscillations on molecular weights, tensile strength, and dynamic mechanical properties of extrudates were also studied. The experimental results showed that the presence of ultrasonic oscillations during extrusion could significantly increase the productivity of plastomers at the same die pressure, and reduce die swell and melt fracture such as sharkskin at a given screw rotation speed. The die pressure and apparent viscosity of plastomers remarkably decreased with increasing ultrasonic intensity. Introduction of ultrasonic oscillations into plastomer melts can improve their processibility. The possible mechanism for ultrasonic improvement of rheological behavior was also proposed in this article. Under certain conditions, ultrasound‐assisted extrusion could slightly decrease the glass transition temperature (Tg) and storage modulus of plastomers due to the minor reduction in molecular weights, but showed no significant impact on yield strength and strength at break. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The effects of ultrasonic oscillation on die pressure, productivity of extrusion, melt viscosity, and melt oscillating flow of polystyrene (PS) as well as their mechanism were studied in a special ultrasonic oscillations extrusion system developed in our lab. The experimental results show that in the presence of ultrasonic oscillations, the PS melt oscillating flow or surface distortion of PS extrudate is inhibited or disappears. The surface appearance of PS extrudate gets greatly improved. The die pressure, melt viscosity, flow activation energy, and consistency efficiency of PS decreased and the productivity of PS extrudate increased in the presence of ultrasonic oscillation. The shear sensitivity of PS melt viscosity is decreased because of the increase of its power law index in the presence of ultrasonic oscillation. Introduction of ultrasonic oscillation into PS melt can greatly improve the processibility of PS. Their possible mechanism is also proposed in this article. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2451–2460, 2002  相似文献   

5.
The effect of ultrasonic vibration and binary processing aid in improving the processability of metallocene linear low‐density polyethylene (mLLDPE) was investigated. During extrusion, ultrasonic vibration clearly reduced the die pressure and apparent viscosity of mLLDPE but had only a slight effect on its melt fracture. The effect of diatomite/PEG binary processing aid (BPA) was excellent in reducing the viscosity and eliminating the sharkskin fracture of mLLDPE. The effect of ultrasonic vibration and binary processing aid in improving the processability of mLLDPE was synergetic. With a combination of ultrasonic vibration and a small amount of processing aid, the flowability of mLLDPE was further improved, and the critical shear rate for the onset of sharkskin fracture was increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1927–1935, 2007  相似文献   

6.
The effect of ultrasound on flow behaviors of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE) melt in capillary‐like die during the extrusion is investigated in this article. The rise in die temperature is found with increasing ultrasound power, especially at lower initial die temperature. At the same die temperature, the presence of ultrasound can decrease the apparent viscosity and the viscous flow activation energy of mLLDPE melt then increase its slip velocity at the capillary wall in the die. The flow behavior of mLLDPE melt is enhanced during ultrasound‐assisted extrusion as the presence of ultrasound can enhance the mobility and the orientation of entangled segments. It is also found that ultrasound can break the dispersed phase of mLLDPE/polyolefin elastomer (POE) blend into small pieces thus improve the homogeneous dispersion of POE phase in mLLDPE matrix. A possible mechanism for enhanced flow behaviors of mLLDPE melt because of the presence of ultrasound is also proposed. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

7.
The effects of ultrasonic irradiation on extrusion processing and mechanical properties of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM) blends are examined. Results show that appropriate irradiation intensity can prominently decrease die pressure and apparent viscosity of the melt, increase output, as well as increase toughness of PP/EPDM blends without harming rigidity. In case the blends are extruded with ultrasonic irradiation twice, the impact strength of the blend rises sharply at 50–100 W ultrasonic intensity, and amounts to more than 900 J/m, 1.5 times as high as that of blend without ultrasonic irradiation. Scanning electron microscopy observation shows that with ultrasonic irradiation, morphology of uniform dispersed EPDM phase and good adhesion between EPDM and PP matrix was formed in PP/EPDM blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3519–3525, 2003  相似文献   

8.
The effects of ultrasonic oscillations on the rheological and viscoelastic properties and morphology of high‐density polyethylene (HDPE)/Illite (70/30) composites were studied. The experimental results showed that the die pressure and apparent viscosity of the HDPE/Illite (70/30) composites were reduced greatly, and so the mass‐flow rate significantly increased in the presence of ultrasonic oscillations during the extrusion. Scanning electron microscopy and linear viscoelasticity tests showed that ultrasonic oscillations improved the dispersion of the Illite particles into the HDPE matrix. The aggregation of the Illite particles disappeared on the fractured surfaces of HDPE/Illite (70/30) composites extruded in the presence of ultrasonic oscillations, and this indicated that ultrasonic oscillations promoted the homogeneous dispersion of Illite particles into the HDPE matrix. Ultrasonic oscillations caused the permanent reduction of the dynamic viscosity and zero‐shear viscosity of HDPE/Illite (70/30) composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 379–384, 2005  相似文献   

9.
研究了电磁动态塑化挤出条件下振动力场对茂金属线性低密度聚乙烯(mLLDPE)加工的影响。振动力场有效地降低了模头压力和挤出机消耗的功率,并使mLLDPE的熔体强度得到了提高,从而大大改善了mLLDPE的加工。  相似文献   

10.
The effects of ultrasonic oscillations on the rheological behavior, mechanical properties, and morphology of high‐density polyethylene (HDPE)/polystyrene (PS) blends were studied. The experimental results show that the die pressure and apparent viscosity of HDPE/PS blends are remarkably reduced in the presence of ultrasonic oscillations and that mechanical properties of the blends are improved. The particle size of the dispersed phase in HDPE/PS blends becomes smaller, its distribution becomes narrower, and the interfacial interaction of the blends becomes stronger if the blends are extruded in the presence of ultrasonic oscillations. Ultraviolet spectra and Soxhlet extraction results show the formation of a polyethylene‐PS copolymer during extrusion in the presence of ultrasonic oscillations, which improves the compatibility of HDPE/PS blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 23–32, 2002  相似文献   

11.
借助流变测量和连续介质理论,不依赖已有的本构关系,对平行叠加正弦振动条件下高分子熔体经毛细管的动态挤出过程进行了理论分析。以低密度聚乙烯(LDPE)为原材料,实验测量LDPE熔体在一定振动频率和振幅下毛细管入口压力、体积流量和挤出胀大的瞬态值,即可得到动态成型过程中高分子熔体剪切应力、剪切速率和表观粘度的变化规律:随振幅和频率的变化,LDPE熔体的表观粘度呈非线性变化趋势;在不同的振幅和频率下动态挤出LDPE熔体,跟稳态挤出时一样,壁面剪切应力与壁面剪切速率也成非线性比例关系。  相似文献   

12.
The influence of poly(ethylene glycol) (PEG)‐containing additives on the extrusion behavior of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blend was studied. It was found that the addition of small amounts of PEG to UHMWPE/PP blend resulted in significant reduction of die pressure and melt viscosity, and obvious increase of the flow rate at a given die pressure, while PEG/diatomite binary additives enhanced the improvement in the processability of UHMWPE/PP blend. When pure HDPE was extruded with the die through which UHMWPE/PP/PEG blend was previously extruded, the extrusion pressure of HDPE increased with the extrusion time gradually. This meant that PEG might migrate to the die wall surface and coat it in the extrusion of UHMWPE/PP/PEG blend. FTIR spectra and SEM micrographs of the UHMWPE/PP/PEG extrudates indicated that PEG located not only at the surface but also in the interior of the extrudates. So, the external lubrication at the die wall, combined with the internal lubrication to induce interphase slippage of the blend, was proposed to be responsible for the reduction of die pressure and viscosity. In addition, an ultrahigh molecular weight polysiloxane and a fluoropolymer processing aid were used as processing aids in the extrusion of UHMWPE/PP as control, and the results showed that only minor reduction effects in die pressure and melt viscosity were achieved at their suggested loading level. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1282–1288, 2006  相似文献   

13.
Gas-assisted sheet extrusion is a promising and environment-friendly method used in polymer processing. Insufficient gas intake due to the adherence of the polymer melt to the inlet gap is a disadvantage of the method. Therefore, in this study an improved die assembly with parallel gas intake was designed. As the melt is prone to falling at the die exit during the horizontal extrusion process, different thickness settings are used for the up and down gas layers (0.25 and 0.75 mm, respectively) to avoid this. For the improved die assembly, the gas inlet pressure may be varied systematically to study the mechanism of stable sheet extrusion. When the gas inlet pressure is 0.1 MPa, the melt can be extruded smoothly, and the extruded sheet surface is transparent and flat. However, when the optimum pressure is exceeded, the extruded sheet becomes twisted or even broken.  相似文献   

14.
Melt extension flow is a common flow pattern during polymer processing, such as entrance converging flow in die extrusion or runner injection of polymer melts from an extruder barrel, blow molding, blowing film and melt spinning. Extensional viscosity is one of the important characterizations of the flow characteristics for polymer fluids. A new extension viscosity equation was established based on White‐Metzner model, Vinogradov‐Malkin viscosity equation and a new relaxation time equation in the present paper. The melt elongation viscosities of metallocene linear low‐density polyethylene (mLLDPE) and polyvinyl butyral (PVB) resins at 130°C were estimated applying this viscosity equation, and the predictions were compared with the measured data of mLLDPE and PVB resins at 130°C reported from reference. The results showed that calculations were close to the experimental data. The parameters in this equation were easy to be determined and the equation was convenient to use for estimating the extension viscosity of polymer melts. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

15.
The effects of the lubricant physical properties on the processing of polytetrafluoroethylene (PTFE) fine powder resins are studied. Lubricants having different surface tension and viscosity were used; the two properties changed independently. These effects were studied by using dies of various contraction angle and reduction ratio for resins having a variety of molecular architecture. It was found that the wettability (surface tension) of the lubricant strongly affects the pressure needed to extrude the PTFE pastes. The viscosity of the lubricant was also found to play a significant role in the process since a lubricant with a low viscosity causes the paste to be extruded at a lower pressure. These effects of the physical properties on the extrusion pressure influence significantly the mechanical properties of the final extrudates. The latter are functions of the degree of fibrillation, which is significantly influenced by the wettability and viscosity of lubricants. Finally, the effects of die geometry on extrusion pressure and mechanical properties of extrudates were also assessed in order to determine the geometrical characteristics and operation conditions for the optimization of the process.  相似文献   

16.
Effect of the heat stabilizer on the melt rheological properties of the blends of polypropylene (PP) with mLLDPE (mettalocene linear low density polyethylene), after thermal degradation in an air oven, was studied. Study carried out is presented to describe the effect of blending ratio and presence of stabilizer on shear stress, shear rate, melt viscosity and melt elasticity parameters. In general, blending of PP with mLLDPE results in an increased viscosity. The viscosity of PP abruptly decreases after the thermal degradation. Interestingly the melt viscosity PP/mLLDPE blend does not show such a marked decrease. This shows that mLLDPE not only acts as an impact modifier but also acts as a thermal stabilizer. The presence of stabilizer in both materials has not shown much difference in melt viscosity thereby suggesting adequate stabilization of the blend system.  相似文献   

17.
邹恩广  王鉴 《塑料科技》2007,35(12):82-85
研究了3种含氟塑料加工流变剂对茂金属线型低密度聚乙烯(mLLDPE)挤出性能的影响;比较了不同流变剂添加到mLLDPE中,在单、双螺杆挤出机中的挤出特性。结果表明:含氟塑料加工流变剂可以明显降低mLLDPE的挤出扭矩,消除挤出熔体破裂,改善薄膜制品的外观质量。  相似文献   

18.
A pulse pressure was superimposed on the melt flow in extrusion, called vibration extrusion. A die (L/D = 17.5) was attached to this device to study the rheological properties of an amorphous polymer (ABS) and semicrystalline polymer (PP, HDPE), prepared in the vibration field, and the conventional extrusion were studied for comparison. Results show that the melt vibration technique is an effective processing tool for improving the polymer melt flow behavior for both crystalline and amorphous polymers. The enhanced melt rheological property is also explained in terms of shear thinning criteria. Increasing with vibration frequency, extruded at constant vibration pressure amplitude, the viscosity decreases sharply, and so does when increasing vibration pressure amplitude at a constant vibrational frequency. The effect of vibrational field on melt rheological behavior depends greatly on the melt temperature, and the great decrease in viscosity is obtained at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5292–5296, 2006  相似文献   

19.
重点探讨了邻苯二甲酸二异壬酯(DINP-S)在提高挤出效益方面的优越性,在典型的挤出加工条件下,DINP-S比DOP更能降低混合料的熔融粘度,这有助于降低口模压力,减少机械磨损或提高挤出生产率(高达21%),这种生产率的提高可在无须更改产品配方和生产工艺,无须额外固定投资,无须额外能耗,且保持产品品质的情况下实现。  相似文献   

20.
Sheets of medium density polyethylene (MDPE) were extruded through a slit die containing an internal separator. Thus, the melt stream was momentarily split before emerging from the die. A line of separation was evident in the extruded sheets. It is attributed to incomplete welding or healing. Measurements of tear energy Gc revealed that the extruded sheets were anisotropic and that the weld line was extremely weak after extrusion start-up, only about 1/5 of the strength elsewhere. As extrusion continued, the strength of the weld line increased to reach that of the bulk material after about 10 min. This is attributed to an increasing temperature of the melt in the die region, aiding interdiffusion. A sample containing 30% by weight of short glass fibers showed less initial weld-line weakness but the weld line remained weak in this case, even after long extrusion times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号