首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Defocus Magnification   总被引:1,自引:0,他引:1  
A blurry background due to shallow depth of field is often desired for photographs such as portraits, but, unfortunately, small point-and-shoot cameras do not permit enough defocus because of the small diameter of their lenses. We present an image-processing technique that increases the defocus in an image to simulate the shallow depth of field of a lens with a larger aperture. Our technique estimates the spatially-varying amount of blur over the image, and then uses a simple image-based technique to increase defocus. We first estimate the size of the blur kernel at edges and then propagate this defocus measure over the image. Using our defocus map, we magnify the existing blurriness, which means that we blur blurry regions and keep sharp regions sharp. In contrast to more difficult problems such as depth from defocus, we do not require precise depth estimation and do not need to disambiguate textureless regions.  相似文献   

2.
Typical high dynamic range (HDR) imaging approaches based on multiple images have difficulties in handling moving objects and camera shakes, suffering from the ghosting effect and the loss of sharpness in the output HDR image. While there exist a variety of solutions for resolving such limitations, most of the existing algorithms are susceptible to complex motions, saturation, and occlusions. In this paper, we propose an HDR imaging approach using the coded electronic shutter which can capture a scene with row‐wise varying exposures in a single image. Our approach enables a direct extension of the dynamic range of the captured image without using multiple images, by photometrically calibrating rows with different exposures. Due to the concurrent capture of multiple exposures, misalignments of moving objects are naturally avoided with significant reduction in the ghosting effect. To handle the issues with under‐/over‐exposure, noise, and blurs, we present a coherent HDR imaging process where the problems are resolved one by one at each step. Experimental results with real photographs, captured using a coded electronic shutter, demonstrate that our method produces a high quality HDR images without the ghosting and blur artifacts.  相似文献   

3.
Image‐based rendering (IBR) techniques allow users to create interactive 3D visualizations of scenes by taking a few snapshots. However, despite substantial progress in the field, the main barrier to better quality and more efficient IBR visualizations are several types of common, visually objectionable artifacts. These occur when scene geometry is approximate or viewpoints differ from the original shots, leading to parallax distortions, blurring, ghosting and popping errors that detract from the appearance of the scene. We argue that a better understanding of the causes and perceptual impact of these artifacts is the key to improving IBR methods. In this study we present a series of psychophysical experiments in which we systematically map out the perception of artifacts in IBR visualizations of façades as a function of the most common causes. We separate artifacts into different classes and measure how they impact visual appearance as a function of the number of images available, the geometry of the scene and the viewpoint. The results reveal a number of counter‐intuitive effects in the perception of artifacts. We summarize our results in terms of practical guidelines for improving existing and future IBR techniques.  相似文献   

4.
The ability to interpolate between images taken at different time and viewpoints directly in image space opens up new possiblities. The goal of our work is to create plausible in‐between images in real time without the need for an intermediate 3D reconstruction. This enables us to also interpolate between images recorded with uncalibrated and unsynchronized cameras. In our approach we use a novel discontiniuity preserving image deformation model to robustly estimate dense correspondences based on local homographies. Once correspondences have been computed we are able to render plausible in‐between images in real time while properly handling occlusions. We discuss the relation of our approach to human motion perception and other image interpolation techniques.  相似文献   

5.
基于稀疏表示和结构自相似性的单幅图像盲解卷积算法   总被引:1,自引:0,他引:1  
常振春  禹晶  肖创柏  孙卫东 《自动化学报》2017,43(11):1908-1919
图像盲解卷积研究当模糊核未知时,如何从模糊图像复原出原始清晰图像.由于盲解卷积是一个欠定问题,现有的盲解卷积算法都直接或间接地利用各种先验知识.本文提出了一种结合稀疏表示与结构自相似性的单幅图像盲解卷积算法,该算法将图像的稀疏性先验和结构自相似性先验作为正则化约束加入到图像盲解卷积的目标函数中,并利用图像不同尺度间的结构自相似性,将观测模糊图像的降采样图像作为稀疏表示字典的训练样本,保证清晰图像在该字典下的稀疏性.最后利用交替求解的方式估计模糊核和清晰图像.模拟和真实数据上的实验表明本文算法能够准确估计模糊核,复原清晰的图像边缘,并具有很好的鲁棒性.  相似文献   

6.
We present a method for synthesizing fluid animation from a single image, using a fluid video database. The user inputs a target painting or photograph of a fluid scene along with its alpha matte that extracts the fluid region of interest in the scene. Our approach allows the user to generate a fluid animation from the input image and to enter a few additional commands about fluid orientation or speed. Employing the database of fluid examples, the core algorithm in our method then automatically assigns fluid videos for each part of the target image. Our method can therefore deal with various paintings and photographs of a river, waterfall, fire, and smoke. The resulting animations demonstrate that our method is more powerful and efficient than our prior work.  相似文献   

7.
Images/videos captured by portable devices (e.g., cellphones, DV cameras) often have limited fields of view. Image stitching, also referred to as mosaics or panorama, can produce a wide angle image by compositing several photographs together. Although various methods have been developed for image stitching in recent years, few works address the video stitching problem. In this paper, we present the first system to stitch videos captured by hand‐held cameras. We first recover the 3D camera paths and a sparse set of 3D scene points using CoSLAM system, and densely reconstruct the 3D scene in the overlapping regions. Then, we generate a smooth virtual camera path, which stays in the middle of the original paths. Finally, the stitched video is synthesized along the virtual path as if it was taken from this new trajectory. The warping required for the stitching is obtained by optimizing over both temporal stability and alignment quality, while leveraging on 3D information at our disposal. The experiments show that our method can produce high quality stitching results for various challenging scenarios.  相似文献   

8.
We present a new algorithm for efficient rendering of high‐quality depth‐of‐field (DoF) effects. We start with a single rasterized view (reference view) of the scene, and sample the light field by warping the reference view to nearby views. We implement the algorithm using NVIDIA's CUDA to achieve parallel processing, and exploit the atomic operations to resolve visibility when multiple pixels warp to the same image location. We then directly synthesize DoF effects from the sampled light field. To reduce aliasing artifacts, we propose an image‐space filtering technique that compensates for spatial undersampling using MIP mapping. The main advantages of our algorithm are its simplicity and generality. We demonstrate interactive rendering of DoF effects in several complex scenes. Compared to existing methods, ours does not require ray tracing and hence scales well with scene complexity.  相似文献   

9.
Image blur caused by object motion attenuates high frequency content of images, making post‐capture deblurring an ill‐posed problem. The recoverable frequency band quickly becomes narrower for faster object motion as high frequencies are severely attenuated and virtually lost. This paper proposes to translate a camera sensor circularly about the optical axis during exposure, so that high frequencies can be preserved for a wide range of in‐plane linear object motion in any direction within some predetermined speed. That is, although no object may be photographed sharply at capture time, differently moving objects captured in a single image can be deconvolved with similar quality. In addition, circular sensor motion is shown to facilitate blur estimation thanks to distinct frequency zero patterns of the resulting motion blur point‐spread functions. An analysis of the frequency characteristics of circular sensor motion in relation to linear object motion is presented, along with deconvolution results for photographs captured with a prototype camera.  相似文献   

10.
Depth-of-Field Rendering by Pyramidal Image Processing   总被引:1,自引:0,他引:1  
We present an image-based algorithm for interactive rendering depth-of-field effects in images with depth maps. While previously published methods for interactive depth-of-field rendering suffer from various rendering artifacts such as color bleeding and sharpened or darkened silhouettes, our algorithm achieves a significantly improved image quality by employing recently proposed GPU-based pyramid methods for image blurring and pixel disocclusion. Due to the same reason, our algorithm offers an interactive rendering performance on modern GPUs and is suitable for real-time rendering for small circles of confusion. We validate the image quality provided by our algorithm by side-by-side comparisons with results obtained by distributed ray tracing.  相似文献   

11.
We present a new image completion method based on an additional large displacement view (LDV) of the same scene for faithfully repairing large missing regions on the target image in an automatic way. A coarse‐to‐fine distortion correction algorithm is proposed to minimize the perspective distortion in the corresponding parts for the common scene regions on the LDV image. First, under the assumption of a planar scene, the LDV image is warped according to a homography to generate the initial correction result. Second, the residual distortions in the common known scene regions are revealed by means of a mismatch detection mechanism and relaxed by energy optimization of overlap correspondences, with the expectations of color constancy and displacement field smoothness. The fundamental matrix for the two views is then computed based on the reliable correspondence set. Third, under the constraints of epipolar geometry, displacement field smoothness and color consistency of the neighboring pixels, the missing pixels are orderly restored according to a specially defined repairing priority function. We finally eliminate the ghost effect between the repaired region and its surroundings by Poisson image blending. Experimental results demonstrate that our method outperforms recent state‐of‐the‐art image completion methods for repairing large missing area with complex structure information.  相似文献   

12.
We present an example‐based approach for radiometrically linearizing photographs that takes as input a radiometrically linear exemplar image and a target regular uncalibrated image of the same scene, possibly from a different viewpoint and/or under different lighting. The output of our method is a radiometrically linearized version of the target image. Modeling the change in appearance of a small image patch seen from a different viewpoint and/or under different lighting as a linear 1D subspace, allows us to recast radiometric transfer in a form similar to classic radiometric calibration from exposure stacks. The resulting radiometric transfer method is lightweight and easy to implement. We demonstrate the accuracy and validity of our method on a variety of scenes.  相似文献   

13.
This paper proposes a novel system that “rephotographs” a historical photograph with a collection of images. Rather than finding the accurate viewpoint of the historical photo, users only need to take a number of photographs around the target scene. We adopt the structure from motion technique to estimate the spatial relationship among these photographs, and construct a set of 3D point cloud. Based on the user‐specified correspondences between the projected 3D point cloud and historical photograph, the camera parameters of the historical photograph are estimated. We then combine forward and backward warping images to render the result. Finally, inpainting and content‐preserving warping are used to refine it, and the photograph at the same viewpoint of the historical one is produced by this photo collection.  相似文献   

14.
针对目前基于稀疏表示的图像盲卷积算法细节恢复有限等问题,提出一种基于稀疏表示和梯度先验的图像盲卷积算法。虽然每个图像块可以通过字典稀疏表示,但是图像块重构出的图像常常出现“伪像”,本文将梯度先验知识和超拉普拉斯先验知识融入稀疏表示盲卷积模型中,采用迭代方法交替估计中间清晰图像和模糊核,一旦获得模糊核,采用超拉普拉斯非盲去卷积算法恢复出最终的清晰图像。实验结果表明,与其他去模糊算法相比,本文算法在抑制振铃方面效果显著。  相似文献   

15.
Interactive computation of global illumination is a major challenge in current computer graphics research. Global illumination heavily affects the visual quality of generated images. It is therefore a key attribute for the perception of photo‐realistic images. Path tracing is able to simulate the physical behaviour of light using Monte Carlo techniques. However, the computational burden of this technique prohibits interactive rendering times on standard commodity hardware in high‐quality. Trying to solve the Monte Carlo integration with fewer samples results in characteristic noisy images. Global illumination filtering methods take advantage of the fact that the integral for neighbouring pixels may be very similar. Averaging samples of similar characteristics in screen‐space may approximate the correct integral, but may result in visible outliers. In this paper, we present a novel path tracing pipeline based on an edge‐aware filtering method for the indirect illumination which produces visually more pleasing results without noticeable outliers. The key idea is not to filter the noisy path traced images but to use it as a guidance to filter a second image composed from characteristic scene attributes that do not contain noise by default. We show that our approach better approximates the Monte Carlo integral compared to previous methods. Since the computation is carried out completely in screen‐space it is therefore applicable to fully dynamic scenes, arbitrary lighting and allows for high‐quality path tracing at interactive frame rates on commodity hardware.  相似文献   

16.
This paper proposes a new approach for color transfer between two images. Our method is unique in its consideration of the scene illumination and the constraint that the mapped image must be within the color gamut of the target image. Specifically, our approach first performs a white‐balance step on both images to remove color casts caused by different illuminations in the source and target image. We then align each image to share the same ‘white axis’ and perform a gradient preserving histogram matching technique along this axis to match the tone distribution between the two images. We show that this illuminant‐aware strategy gives a better result than directly working with the original source and target image's luminance channel as done by many previous methods. Afterwards, our method performs a full gamut‐based mapping technique rather than processing each channel separately. This guarantees that the colors of our transferred image lie within the target gamut. Our experimental results show that this combined illuminant‐aware and gamut‐based strategy produces more compelling results than previous methods. We detail our approach and demonstrate its effectiveness on a number of examples.  相似文献   

17.
Many casually taken ‘tourist’ photographs comprise of architectural objects like houses, buildings, etc. Reconstructing such 3D scenes captured in a single photograph is a very challenging problem. We propose a novel approach to reconstruct such architectural scenes with minimal and simple user interaction, with the goal of providing 3D navigational capability to an image rather than acquiring accurate geometric detail. Our system, Peek‐in‐the‐Pic, is based on a sketch‐based geometry reconstruction paradigm. Given an image, the user simply traces out objects from it. Our system regards these as perspective line drawings, automatically completes them and reconstructs geometry from them. We make basic assumptions about the structure of traced objects and provide simple gestures for placing additional constraints. We also provide a simple sketching tool to progressively complete parts of the reconstructed buildings that are not visible in the image and cannot be automatically completed. Finally, we fill holes created in the original image when reconstructed buildings are removed from it, by automatic texture synthesis. Users can spend more time using interactive texture synthesis for further refining the image. Thus, instead of looking at flat images, a user can fly through them after some simple processing. Minimal manual work, ease of use and interactivity are the salient features of our approach.  相似文献   

18.
We present a novel algorithm to reconstruct high‐quality images from sampled pixels and gradients in gradient‐domain Rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per‐pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.  相似文献   

19.
We propose an efficient and robust image‐space denoising method for noisy images generated by Monte Carlo ray tracing methods. Our method is based on two new concepts: virtual flash images and homogeneous pixels. Inspired by recent developments in flash photography, virtual flash images emulate photographs taken with a flash, to capture various features of rendered images without taking additional samples. Using a virtual flash image as an edge‐stopping function, our method can preserve image features that were not captured well only by existing edge‐stopping functions such as normals and depth values. While denoising each pixel, we consider only homogeneous pixels—pixels that are statistically equivalent to each other. This makes it possible to define a stochastic error bound of our method, and this bound goes to zero as the number of ray samples goes to infinity, irrespective of denoising parameters. To highlight the benefits of our method, we apply our method to two Monte Carlo ray tracing methods, photon mapping and path tracing, with various input scenes. We demonstrate that using virtual flash images and homogeneous pixels with a standard denoising method outperforms state‐of‐the‐art image‐space denoising methods.  相似文献   

20.
We propose a versatile pipeline to render B‐Rep models interactively, precisely and without rendering‐related artifacts such as cracks. Our rendering method is based on dynamic surface evaluation using both tesselation and ray‐casting, and direct GPU surface trimming. An initial rendering of the scene is performed using dynamic tesselation. The algorithm we propose reliably detects then fills up cracks in the rendered image. Crack detection works in image space, using depth information, while crack‐filling is either achieved in image space using a simple classification process, or performed in object space through selective ray‐casting. The crack filling method can be dynamically changed at runtime. Our image space crack filling approach has a limited runtime cost and enables high quality, real‐time navigation. Our higher quality, object space approach results in a rendering of similar quality than full‐scene ray‐casting, but is 2 to 6 times faster, can be used during navigation and provides accurate, reliable rendering. Integration of our work with existing tesselation‐based rendering engines is straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号