首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为提高砂浆垫层与预制混凝土墩柱、承台界面间的黏结性能,在连接处涂刷一层界面剂,采用水泥净浆为基准,以不同硅灰掺量为变量,研究硅灰掺量对预制混凝土界面黏结性能的影响,通过实验分别测试了抗折强度、抗压强度、劈拉强度及剪切强度。结果表明,从力学性能上看,同一龄期下,抗折及抗压强度均随着硅灰掺量的增加呈现先提升后下降的趋势,硅灰掺量为8%时的抗折与抗压强度值最大,分别为9.5,63.6 MPa,表现为力学性能最好;从黏结性能上看,劈拉及剪切强度均随着硅灰掺量的增加出现先增加后减小的现象,掺量为8%时,28 d强度值分别为1.7 MPa和1.65 MPa,黏结性能最优,28 d强度增长率较7 d分别提高了40%和65%。综合分析力学性能和黏结性能,得出硅灰掺量为8%时,界面黏结效果最优。  相似文献   

2.
为研发低成本超早强砂浆,利用不同质量分数的超细粉煤灰和矿粉掺入以铝酸盐水泥、硫铝酸盐水泥、石膏为主的三元复合砂浆中,测试砂浆流动性、强度.研究表明:适度掺量的超细粉煤灰和矿粉可以较大程度增大砂浆流动性,增强砂浆的后期强度,而早期强度有所降低.当超细粉煤灰和矿粉以质量分数为5%和15%掺入时,砂浆流动性良好,抗压强度较高,2h、3d和28 d强度分别为42.9 MPa、71 MPa和124.8 MPa.  相似文献   

3.
通过试验,研究了硅烷基聚合物防水粉末掺量对早强砂浆的流动性能、抗压强度、抗折强度、吸水性能及抗氯离子渗透性能的影响规律。早强砂浆是由普通硅酸盐水泥、硫铝酸盐水泥和石膏为胶凝材料制备而成,硅烷基聚合物防水粉末是由γ-氨丙基三乙氧基硅烷、聚乙烯醇和异丁基三乙氧基硅烷为主要原料制成。试验结果表明:硅烷基聚合物防水粉末掺量3.0%以内时,早强砂浆流动度和经时流动度损失符合规范要求;掺量为3.0%时,28 d龄期的早强砂浆试件吸水率最大降低58.9%,抗压强度和抗折强度未降低,抗氯离子渗透性能提高44.6%。  相似文献   

4.
本试验研究了超细高活性矿物掺合料(超细掺合料)与硅灰以单掺、复掺的方式制备超高性能混凝土(UHPC),分析了复掺不同掺量超细掺合料对UHPC的工作性、力学性能、水化热和收缩性能的影响。结果表明:UHPC流动性随超细掺合料掺量的增加而增加,跳桌流动度最高为275 mm;将超细掺合料与质量分数为10%的硅灰以复掺的方式制备UHPC时,随超细掺合料掺量的增加,UHPC抗折强度先增加后降低,抗压强度先增加后趋于平稳,最大抗折强度和抗压强度分别为25.9 MPa和150.0 MPa;超细掺合料与质量分数为10%的硅灰复掺制备的UHPC水化热随超细掺合料掺量增加,先增大后减小;复掺质量分数为10%的超细掺合料与质量分数为10%的硅灰制备的UHPC早期收缩量最小,比单掺质量分数为20%的硅灰制备的UHPC低50.92%。  相似文献   

5.
研究硅灰对羟丙基甲基纤维素(HPMC)改性水泥砂浆的工作性能、力学性能及孔结构的影响。结果表明:(1)当硅灰掺量2%时,流动度和稠度相对基准组略有提高。当硅灰掺量为4%~10%时,新拌水泥砂浆的流动度和稠度呈现递减的趋势,且硅灰最大掺量10%时,流动度和稠度明显降低并出现空洞。(2)硅灰对HPMC改性水泥砂浆3 d龄期的抗折和抗压强度影响不大,但能显著提高28 d龄期的抗折和抗压强度;当硅灰掺量为8%和10%时,28 d龄期试件的抗折强度提高了19%,抗压强度提高了40%。(3)随着硅灰掺量的增加,HPMC改性水泥砂浆新拌砂浆表面气泡不断减少,28 d龄期试样断面的孔结构不断优化。硅灰掺量为8%和10%时,新拌浆体表面气泡最少,试样断面孔结构达到最佳状态。  相似文献   

6.
张成龙  刘漪  张明 《硅酸盐通报》2021,40(7):2174-2183
针对交通压力增大,公路桥梁路面易出现疲劳破坏的问题,提出以聚丙烯(PP)纤维与聚乙烯醇(PVA)纤维提升硫铝酸盐水泥基快速修补材料性能。分别探究了PP纤维与PVA纤维单掺及复掺对硫铝酸盐水泥基快速修补材料流动度、强度以及韧性的影响,并进一步研究了最优复掺比例对修补材料粘结强度及体积稳定性的影响。结果表明:单掺PP纤维对修补材料砂浆流动度影响较小,并且能显著提升抗折强度,掺入0.2%(体积分数,下同)的PP纤维流动度仅下降4%,1 d和28 d抗折强度分别达到了12.8 MPa、15.5 MPa。单掺PVA纤维会大幅减小修补材料砂浆流动度,提升抗压强度,掺入0.2%的PVA纤维流动度下降21%,1 d和28 d抗压强度分别达到了56.6 MPa、84.3 MPa。当PP和PVA纤维按3:1的比例,以0.2%的总体积掺量进行复掺时,两种纤维可以发挥协同作用使修补材料不仅可以获得良好的流动性能、强度与韧性,同时获得较好粘结强度与体积稳定性。28 d时修补材料砂浆的粘结强度达到5.6 MPa,干燥收缩率低至2.73×10-4,可以更好地满足公路桥梁路面、伸缩缝的快速修补需求。  相似文献   

7.
韩莹  赵文杰 《硅酸盐通报》2014,33(11):2924-2929
通过半连续乳液接枝聚合反应合成了m(聚丁二烯)/m(苯乙烯)/m(甲基丙烯酸环氧丙酯)比例为50/46/4的聚丁二烯接枝苯乙烯(St)和甲基丙烯酸环氧丙酯(GMA)共聚胶乳(PB-g-PSG).水灰比为0.4(质量比)时,将硅灰和胶乳用于改性水泥砂浆,研究了硅灰掺量和胶乳掺量对改性水泥砂浆的流动度、抗压和抗折强度以及水吸收速率的影响.研究表明:在一定掺量范围内,当胶乳掺量增加时,改性砂浆的流动度增加,吸水率降低;当硅灰掺量增加时,流动度降低,合适的硅灰掺量能降低改性砂浆的吸水率;胶乳和硅灰的复合掺入有益于砂浆力学性能的改善,改性砂浆的抗压强度、抗折强度最高值分别为67.02 MPa和7.40 MPa;利用DSC和XRD研究了硅灰和胶乳对水泥水化的影响,结果表明:当胶乳掺量增加时,水泥水化程度呈先增后降趋势,胶乳掺入10%时,水泥水化程度最高.当硅灰掺量增加时,水泥水化程度呈下降趋势,硅灰掺量为5%时,水泥水化程度最高.综上,胶乳和硅灰可以复合改性水泥砂浆.  相似文献   

8.
为了探究活性掺合料对环氧树脂修补砂浆的改性效果,为修补工程应用提供依据。研究硅灰和粉煤灰对环氧树脂修补砂浆力学性能、粘结强度、尺寸稳定性和抗冻性的影响,并采用扫描电子显微镜(SEM)和压汞法探究和分析影响机理。结果表明:环氧树脂使砂浆抗压强度降低,掺入硅灰可补偿强度损失,掺粉煤灰砂浆的强度随龄期增加而增加,但其中28 d和56 d强度低于对照组;硅灰和低掺量(≤10%,质量分数)粉煤灰可以提高修补砂浆粘结强度;硅灰对修补砂浆尺寸稳定性有不利影响,粉煤灰则相反;砂浆的抗冻性随着硅灰掺量增加先增加后降低,随着粉煤灰掺量增加而降低。  相似文献   

9.
高性能聚合物修补砂浆的研究   总被引:2,自引:2,他引:0  
通过研究水灰比、可再生聚合物胶粉和聚丙烯纤维掺量对聚合物修补砂浆流动性、强度和抗裂性能的影响,开发了一种高性能聚合物修补砂浆.研究表明:水灰比为0.35,聚合物胶粉掺量为聚合物砂浆总量的1.5%,聚丙烯纤维掺量为胶凝材料的0.3%,聚合物砂浆的整体性能较好;28 d抗压强度、抗折强度以及压折比可以达到71.06 MPa、14.53 MPa和4.89,是一种高强加固材料.  相似文献   

10.
石灰石粉锂渣超早强超高强混凝土研究   总被引:5,自引:1,他引:4  
研究了石灰石粉及其与锂渣复合掺加对混凝土强度的影响.研究表明,石灰石粉掺量在10%以下时有利于抗压强度的发展,在20%以下时有利于抗折强度的发展.10%的石灰石粉和10%的锂渣复合显示出优良的复合效应,当单位水泥用量为464kg/m3 时,7d抗压强度达到了105MPa.28d强度达到了124MPa,60d强度达到了132MPa.可代替矿渣、硅灰制备超早强高强超高强混凝土.  相似文献   

11.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

12.
对影响硫铁矿尾砂替代天然砂制备自流平砂浆的流动度和力学性能的主要因素进行了研究.结果表明,尾砂制备自流平砂浆强度主要受胶粉掺量、集灰比、尾砂替代率的影响.硫铁矿尾砂存在最佳掺量,替代率为65%时,自流平砂浆的28 d抗压强度可达52.9 MPa,抗折强度9.3 MPa,符合自流平砂浆标准抗压强度等级C40和抗折强度等级F7.  相似文献   

13.
夏志伟  陈俊 《水泥工程》2022,35(6):80-84
本文研究了水胶比、骨料、硅灰、超细矿粉、减水剂类型等参数对超高性能混凝土的流动性、粘度、抗压强度和抗折强度的影响规律,给出了低粘度超高性能混凝土粘度的主要影响因素:水胶比、细骨料比例、减水剂类型,提出了适宜配合比参数范围:水胶比为0.16,硅灰掺量为15%,超细矿粉掺量为10%,细砂比例≤20%,骨料选用精制石英砂,减水剂选用降粘型液体减水剂。  相似文献   

14.
为了改善高强机制砂混凝土的工作性能并提高其抗压强度,通过比强度法以及活性效应强度贡献率,直观描述了S105级矿粉掺量变化对水泥基材料的强度贡献大小,并基于机制砂中不同石粉含量下单掺S105级矿粉和机制砂中石粉含量不变时双掺S105级矿粉与不同掺合料的试验进行分析.结果 表明,S105级矿粉掺量的增加对水泥基材料的活性效应强度贡献率有着积极的促进作用.机制砂中石粉含量为6%时,C80机制砂混凝土工作性能及强度效果最佳,增加石粉含量会使混凝土工作性能变差,强度有所下降.同单掺S105级矿粉相比,双掺S105级矿粉与微珠时早期强度先增大后减小,双掺S105级矿粉与硅灰时早期强度减小,两者28 d抗压强度最大增幅分别为11.5%、14.2%,60d抗压强度最大增幅分别为8.6%、10.7%.此外,S105级矿粉与超细矿粉双掺可能会出现混凝土强度倒缩现象.  相似文献   

15.
高强砂浆是制备结构修补砂浆、灌浆料和超高性能纤维增强混凝土(UHPC)的基础,通过研究聚丙烯纤维长度和掺量对高强砂浆流动度和抗折抗压强度的影响,得出聚丙烯纤维在高强砂浆中的应用经验。研究表明:随着聚丙烯纤维掺量增加导致高强砂浆的流动度降低,1 d抗折强度和抗压强度提升明显;高强砂浆中聚丙烯纤维合理掺量为0.225%,最佳长度为6~10 mm。  相似文献   

16.
在普通硅酸盐水泥砂浆中加入济钢产超细矿渣,研究不同掺量的超细矿渣对水泥浆体凝结时间及胶砂流动度、强度的影响.实验结果表明:随着掺量的提高,水泥浆体的初凝时间延长,终凝时间缩短;胶砂流动度随超细矿渣掺量的增大而减小;随超细矿渣掺量的增大,水泥胶砂的3d和28 d强度提高,当质量分数掺量为30%时,水泥砂浆28 d的抗折、抗压强度达到最大,分别达到9.65 MPa和68.44 MPa.  相似文献   

17.
本文目的,探究影响无机矿物聚合物基快速修补砂浆抗压强度和凝结时间的主要因素及其变化规律。探究方法,以矿碴和粉煤灰为主要原材料,加入纤维和减水剂作为辅助材料,在碱性激发剂作用下,常温下制备无机矿物聚合物砂浆和净浆。探究结果,水玻璃模数在0.76~0.93范围内,水玻璃掺量为0.34%,胶凝材料掺量为4时,无机矿物聚合物基快速修补砂浆可以兼顾早强和快硬;试件可在10~20min内凝结硬化,3d抗压强度达到33.9MPa;是一种早强快硬的新型修补材料。  相似文献   

18.
讨论了C(水泥)+UPFA(超细粉煤灰)、C+SF(硅灰)二元和C+UPFA+SF三元胶凝材料体系中,新拌浆体的黏度、流动度与浆体的相对密实度的关系,以及相对密实度和流动度对活性粉末混凝土RPC强度的影响.实验结果表明:(1)双掺硅灰和超细粉煤灰,随活性粉末掺量的增加,新拌浆体的黏度增加,流动性下降,相对密实度提高;(2)双掺硅灰和超细粉煤灰的RPC强度远高于单掺硅灰时的强度;(3)RPC强度与体系中胶凝材料的相对密实度和流动度有关,复掺硅灰和超细粉煤灰,当密实度为0.669,流动度为182mm时,其RPC的7d抗压强度高迭150.4MPa.  相似文献   

19.
单组分高强修补型聚合物砂浆的开发研究   总被引:1,自引:1,他引:0  
罗毅 《硅酸盐通报》2008,27(5):1085-1086
研制开发了一种单组分高强聚合物修补砂浆,讨论了聚合物掺量、灰砂比、水灰比对水泥砂浆粘结强度、抗压强度及抗折强度的影响,并最终确定了聚合物砂浆的基本组成:聚合物乳胶粉掺量为5~10%,灰砂比为1∶ 1,水灰比为0.19~0.21,在此基础上加入高效减水剂及纤维素醚等,得到了一种性能优良的单组分聚合物修补砂浆.  相似文献   

20.
段承刚  孙永涛 《硅酸盐通报》2021,40(7):2296-2305
为定量研究S105矿粉与其他矿物掺合料共同作用对C80高强机制砂混凝土的和易性、抗压强度和干燥收缩性能的影响规律,通过试验得到不同龄期(3 d、7 d、28 d、60 d)下,S105矿粉单掺,以及掺S105矿粉的同时以不同含量的微珠、超细矿粉、硅灰分别取代水泥时,高强机制砂混凝土的坍落度、扩展度、抗压强度和干燥收缩率,并利用图表分析及拌合物实际状态对比等对其性能的变化趋势进行分析。结果表明:在一定掺量范围内复掺多种矿物掺合料,有利于提高高强机制砂混凝土的和易性和抗压强度,并显著减小其干燥收缩。在保证混凝土和易性良好的条件下,相比于单掺S105矿粉,S105矿粉与不同矿物掺合料双掺对提高混凝土的综合性能有更显著的作用。综合考虑对和易性、抗压强度和干燥收缩性能的影响,当超细矿粉取代水泥的质量分数为3%时,即水泥与S105矿粉和超细矿粉的质量比为33:11:1时,高强机制砂混凝土的性能处于较好的水平,其粘聚性和流动性都有显著改善,其3 d和60 d抗压强度分别增长3.1%和5.1%,其干燥收缩率则减小了4.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号