首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential of a multi-pulse (MP) laser excitation scheme for deep stratigraphy of electrolytically galvanized steel using laser-induced breakdown spectrometry (LIBS) has been evaluated. For this purpose, a commercial electro-optically (EO) Q-switched Nd:YAG laser was employed, where by reducing the delay between the Q-switch opening and the flash lamp, a train of pulses (up to 11) separated by approximately 7.40 μs was generated during one lamp flashing. Plasma emission after each individual laser pulse of the MP sequence was detected by a spectrograph equipped with an intensified charge-coupled device (iCCD) detector. With MP excitation, the ablation efficiency was increased ten-fold on iron sample and 22.5-fold on zinc material with respect to dual-pulse or single-pulse excitation. The LIBS signal generated by MP excitation shows an analogous enhancement. Although the total energy per shot delivered to samples was only 60 mJ, it was possible using LIBS to measure the sample stratigraphy up to depths of 90 μm on zinc-coated steel sheets. A satisfactory agreement between the Zn thickness determined by the MP-LIBS system and data from the manufacturer has also been obtained.  相似文献   

2.
The influence of crater depth on plasma properties and laser-induced breakdown spectroscopy (LIBS) emission has been evaluated. Laser-induced plasmas were generated at the surface and at the bottom of different craters in a copper sample. Plasmas produced at the sample surface and at the bottom of the craters were spatially and temporally resolved. LIBS emission, temperature, and electronic number density of the plasmas were evaluated. It is shown that the confinement effect produced by the craters enhances the LIBS signal from the laser-induced plasmas.  相似文献   

3.
Residual stresses and microstructure of thermal cutted steel sheet A research project of Doppelmayr Seilbahnen GmbH and the Swiss Federal Laboratories of Materials Testing and Research (EMPA) was launched to investigate the residual stress depth profiles induced by different thermal cutting methods. The measurements have been performed by X‐ray stress analysis. Pronounced differences in the stress levels at the surface and for the depth profiles have been obtained for the different cutting methods (plasma, microplasma, autogenous (gas), and laser cutting). Near the surface a small region of compression stresses due martensitic or bainitic transformation was found. With increasing depth a transition to tensile stresses occurs, which are caused by the contraction in the heat affected zone (HAZ) during cooling. The highest tensile (237MPa) and compression stresses (‐550MPa) have been obtained for the laser cut samples, while the microplasma cut samples showed the lowest residual stresses (max. 180MPa/‐56MPa).  相似文献   

4.
In this work, plasma characterization by laser-induced breakdown spectroscopy (LIBS) has been investigated. We propose a method based on the calculation of the optical thicknesses of emission spectral lines in the framework of a homogeneous optically thick plasma in local thermodynamic equilibrium (LTE). In this approach, self-absorption is taken into account to retrieve the optically thin intensities and plasma characterization is achieved. The developed procedure is applied to magnesium (Mg) lines measured from plasmas generated in air at atmospheric pressure from calcium hydroxide samples using an infrared Nd:YAG laser. The influence of laser irradiance on both plasma shape and emission intensity was studied to select the most suitable experimental conditions. Spectral lines of Mg I-II were measured and analyzed for different laser energies, delay times, and concentrations of the analyte. In each case, the plasma temperature, the electron density, and the parameters Nl were determined, without employing curves-of-growth. The results obtained showed the practical usefulness of the method to provide valuable information in LIBS experiments.  相似文献   

5.
Recently, optical image coding using a circular Dammann grating (CDG) has been proposed and investigated. However, the proposed technique is intensity based and could not be used for three-dimensional (3D) image coding. In this paper, we investigate an optical image coding technique that is complex-amplitude based. The system can be used for 3D image coding. The complex-amplitude coding is provided by a circular Dammann grating through the use of a digital holographic recording technique called optical scanning holography. To decode the image, along the depth we record a series of pinhole holograms coded by the CDG. The decoded reconstruction of each depth location is extracted by the measured pinhole hologram matched to the desired depth. Computer simulations as well as experimental results are provided.  相似文献   

6.
A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials.  相似文献   

7.
We present experiments to predict the maximum penetration depth atwhich typical biological structures in amelanotic tissue can bedetected with confocal microscopy. The detected signal is examinedas the signal source strength (index of refraction mismatch), thesource depth, and the medium scattering coefficient are varied. Thedetected background produced by scattering outside the focal volume isexamined as the medium scattering coefficient, the depth in the medium, the dimensionless pinhole radius, nu(p), and theshape of the scattering phase function are varied. When the systemapproaches ideal confocal performance (nu(p) ? 3), the penetration depth is limited by the signal-to-noiseratio to approximately 3-4 optical depths (OD's) for a 0.05 indexmismatch. As nu(p) increases to 8, thepenetration depth is limited by the signal-to-background ratio and isdependent on the scattering coefficient. At mu(s) = 100 cm(-1) (l(s) = 100 mum) and an index mismatch of 0.05, the maximum penetrationdepth is approximately 2 OD.  相似文献   

8.
Eun-Hee Cirlin 《Thin solid films》1992,220(1-2):197-203
Recently, there has been a rapid increase in the application of multilayered structured materials, as opposed to bulk materials, in many areas of technological development. Accurate characterization of the structure and composition of advanced multilayers such as superlattices, quantum wells, contacts, and coatings is important for materials and device fabrication technology. Surface analysis techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy, and secondary ion mass spectrometry (SIMS) in conjunction with ion beam sputtering (sputter depth profiling) are at present the most widely used methods for characterization of modern multilayer thin film materials and devices. Ion-beam-induced surface topography, however, can limit depth resolution, and with SIMS, can also cause changes in the secondary ion yield. These changes are due to the high sensitivity of secondary ion yield to the local angle of incidence on sputter-roughened surfaces. Degradation of depth resolution and changes in secondary ion yields during sputter depth profiling have often limited studies of thin film interdiffusion, segregation, oxidation at interfaces, and impurity effects. Much theoretical and experimental work has been carried out to try to improve depth resolution including the use of low ion beam energy, high angle of incidence, and two ion guns. Recent studies of AES and SIMS with sample rotation have shown that depth resolution can be improved substantially and that constant secondary ion yields in SIMS can be achieved. We will first provide an overview of the studies made by various groups to improve depth resolution of metal multilayers using AES with rotation. Next we will review recent investigations of SIMS using sample rotation including studies of the effects of sample rotation on O2+ ion-beam-induced topography, secondary ion yield, and the depth resolution of electronic, metallurgical and dielectric materials. The results presented demonstrate that SIMS with sample rotation provides constant secondary ion yield, and depth-independent depth resolution because sample rotation prevents ion-beam-induced roughness and reduces the effect of the inhomogeneity of low energy ion beams.  相似文献   

9.
激光诱导击穿光谱是一种新的元素分析方法,但仍处于不断完善之中。利用它可以分析不同形态样品的成分,因此在成分分析和微量元素检测方面具有重要的应用前景。本文阐述了激光击穿诱导光谱仪的基本原理和激光诱导击穿光谱在多个领域中的应用,研究内容涉及固体样品、液体样品、气体样品、微量杂质分析和成分深度剖析等,并分析了基体效应、自吸收效应、测量时间、环境气体、激光参数等对激光诱导击穿光谱分析结果的影响。  相似文献   

10.
Lal B  Zheng H  Yueh FY  Singh JP 《Applied optics》2004,43(13):2792-2797
The effect of various parameters on the accuracy of the laser-induced breakdown spectroscopy (LIBS) data taken from pellet samples has been investigated. The dependence of the standard deviation of the LIBS data on the amount and nature of the binder used, pressure used to press the powder into a pellet, and the position of the focal spot on the pellet has been investigated. Pellets made from industrially important materials such as silica, alumina, and lime with polyvinyl alcohol, sucrose, and starch as binders have been studied. The results thus obtained are tested by preparation of the calibration curves for Si, Fe, and B in the pellets made from the powder glass batch used as a surrogate for the batch employed for the vitrification of radioactive waste.  相似文献   

11.
Zhou W  Li K  Qian H  Ren Z  Yu Y 《Applied optics》2012,51(7):B42-B48
The laser ablation fast pulse discharge plasma spectroscopy (LA-FPDPS) technique has demonstrated its validity to enhance the optical emission of laser-induced plasma. It has the potential to improve the performance of traditional LIBS measurement. Very recently, LA-FPDPS with a nanosecond pulse discharge circuit has been developed, which has a better capability to enhance the optical emission intensity of laser plasma compared with that using a microsecond pulse discharge circuit. In this paper, the effect of the discharge capacitance and discharge voltage on the optical emission of soil plasma generated by LA-FPDPS with a nanosecond pulse discharge circuit is evaluated in detail. In addition, the stability of the time delay between the laser firing and discharge, and between the discharge and optical emission, has been carefully investigated.  相似文献   

12.
Zhang H  Yueh FY  Singh JP 《Applied optics》1999,38(9):1459-1466
Laser-induced breakdown spectrometry (LIBS) has been used to detect atomic and molecular species in various environments. LIBS has the capability to be used as a continuous-emission monitor to monitor toxic-metal concentrations in stack emissions. Recently a mobile LIBS system was calibrated in our laboratory and tested as a multimetal continuous-emission monitor during a joint U.S. Department of Energy-Environmental Protection Agency (EPA) test. LIBS measurements were performed with three sets of metal concentrations at the EPA Rotary Kiln Incinerator Simulator. The LIBS system successfully measured concentrations of Cr, Pb, Cd, and Be in near real time in this test. Real-time LIBS data were averaged and compared with data obtained from an EPA reference method that was conducted concurrently with LIBS. The details of the LIBS calibration and results of these LIBS measurements are described.  相似文献   

13.
Soils from various sites have been analysed with the laser-induced breakdown spectroscopy (LIBS) technique for total elemental determination of carbon and nitrogen. Results from LIBS have been correlated to a standard laboratory-based technique (sample combustion), and strong linear correlations were obtained for determination of carbon concentrations. The LIBES technique was used on soils before and after acid washing, and the technique appears to be useful for the determination of both organic and inorganic soil carbon. The LIBS technique has the potential to be packaged into a field-deployable instrument.  相似文献   

14.
This paper demonstrates the results of the comparison of step-scan FT-IR photoacoustic spectroscopy with other established spectroscopic and microscopic techniques in the quantitative depth profile determination of micrometer- and submicrometer-thick multilayered thin coatings. The power of the phase rotation and phase spectrum analytical methods to clearly distinguish the infrared signature of submicrometer-thick coatings is demonstrated. The thickness determined by the step-scan FT-IR photoacoustic method is in very reasonable agreement with optical microtomy/microscopy measurements performed at-line during the coating process. The former technique described in detailed here offers substantial benefits in terms of measurement time and operator dependency, while not sacrificing the accuracy of the measurement. The problem of saturation and its effect on "real-life" samples is also discussed.  相似文献   

15.
Nitrogen depth profile of plasma nitrided pure iron was measured and evaluated by accurate experimental techniques. Plasma nitriding cycles were carried out on high purity iron substrate in an atmosphere of 75% H2-25% N2. Nitrogen concentration depth profiles in the compound layer and the diffusion zone were characterized by glow discharge optical emission spectroscopy (GDOES) and secondary ion mass spectroscopy (SIMS), respectively. Nitrogen diffusion depths were measured accurately by optical and scanning electron microscopy as well as SIMS technique at different nitriding times. Experimental results indicated good agreement between SIMS data and microscopic evaluations for various nitriding cycles. The results of SIMS showed the nitrogen diffusion depth of about 2000 μm in the diffusion zone for 10 h plasma nitriding at 550 °C. Such high depth had not been detected in previous investigations in which the conventional methods such as EDS, GDS, XPS, EPMA or ion probe techniques were used.  相似文献   

16.
J.Y. Wang  U. Starke 《Thin solid films》2009,517(11):3402-112
Concentration-depth profiles of sputter-deposited Si/Al multilayered specimens were determined by model fitting to measured data obtained by depth profiling, using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). The model used for calculation of the concentration-depth profile accounts for the broadening (“smearing”) upon experimental depth profiling owing to the effects of atomic mixing, preferential sputtering, surface roughness and information depth of either the Auger electrons (for AES depth profiling) or the photoelectrons (for XPS depth profiling) or the secondary ions (for SIMS depth profiling). The depth resolution for each technique was derived directly from the values determined for the fitting parameters in the model.  相似文献   

17.
A systematically prepared set of ITO layers for solar cell applications has been analyzed by spectroscopic variable angle ellipsometry in order to trace the dependence of free carriers’ distribution along the film depth as a function of film thickness as well as its change upon annealing. Samples were deposited on silicon substrates with various thicknesses in steps of approximately 10–20 nm. This set was duplicated and these samples were annealed, so that for each thickness an as-deposited and an annealed sample is available. Conventionally measured electrical conductivity and morphological properties (AFM measurements) of the films have been compared with the optical constants’ inhomogeneity, i.e. material properties along the film thickness modelled by variable-angle spectroscopic ellipsometry. The obtained results show that the optical as well as electrical properties of thin ITO films prepared by pulsed DC sputtering are depth dependent. For the deposition conditions used a well-determined reproducible non-uniform distribution of free carriers within the film thickness was determined. In particular it has been found that the majority of free carriers in as-deposited ultra-thin ITO films is concentrated at sample half-depth, while their distribution becomes asymmetric for the thicker films, with a maximum located at approximately 40 nm depth. The distribution of free carriers in annealed samples is qualitatively different from that of as-deposited layers.  相似文献   

18.
For different depth and width of the intermediate layer, a power flow equation is used to calculate spatial transients and steady state of power distribution in W-type optical fibers (doubly clad fibers with three layers). A numerical solution has been obtained by the explicit finite difference method. Results show how the power distribution in W-type optical fibers varies with the depth of the intermediate layer for different values of intermediate layer width and coupling strength. We have found that with increasing depth of the intermediate layer, the fiber length at which the steady-state distribution is achieved increases. Such characterization of these fibers is consistent with their manifested effectiveness in reducing modal dispersion and improving bandwidth.  相似文献   

19.
Nondestructive evaluation (NDE) of disbonded low-permittivity and low-loss dielectric multilayered composite media is of considerable interest in many applications. The ability of microwaves to penetrate inside dielectric materials makes microwave NDE techniques very suitable for interrogating structures made of multilayered dielectric composites. Additionally, the sensitivity of microwaves to the presence of dissimilar layers in such materials allows for accurate detection of a disbonded layer. In a multilayered composite, a disbond may occur between any two (or more) layers. The potential of utilizing microwave NDE techniques for the detection and depth estimation of disbonds in a thick sandwich composite is investigated. This study utilizes a theoretical model developed for investigating the interaction of microwave radiation from an open-ended rectangular waveguide sensor with ann-layer dielectric composite medium. The influence of the standoff distance between the sensor and the medium and the operating frequency on the sensitivity of disbond detection and depth estimation is studied to obtain an optimum set of parameters for enhanced detection sensitivity. Results of the theoretical study are presented with a discussion on the optimization process for a thick sandwich composite composed of 13 dielectric layers.  相似文献   

20.
Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other matrices of soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号