首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transferrin receptor 2 (TfR2), a homologue of the classical transferrin receptor 1 (TfR1), is found in two isoforms, α and β. Like TfR1, TfR2α is a type II membrane protein, but the β form lacks transmembrane portions and therefore is likely to be an intracellular protein. To investigate the functional properties of TfR2α, we expressed the protein with FLAG tagging in transferrin-receptor-deficient Chinese hamster ovary cells. The association constant for the binding of diferric transferrin (Tf) to TfR2α is 5.6 × 106 M 1, which is about 50 times lower than that for the binding of Tf to TfR1, with correspondingly reduced rates of iron uptake. Evidence for Tf internalization and recycling via TfR2α without degradation, as in the TfR1 pathway, was also found. The interaction of TfR2α with Tf was further investigated using atomic force microscopy, a powerful tool used for investigating the interaction between a ligand and its receptor at the single-molecule level on the living cell surface. Dynamic force microscopy reveals a difference in the interactions of Tf with TfR2α and TfR1, with Tf-TfR1 unbinding characterized by two energy barriers, while only one is present for Tf-TfR2. We speculate that this difference may reflect Tf binding to TfR2α by a single lobe, whereas two lobes of Tf participate in binding to TfR1. The difference in the binding properties of Tf to TfR1 and TfR2α may help account for the different physiological roles of the two receptors.  相似文献   

2.
Nitric oxide and reactive oxygen species play a critical role in photoreceptor apoptosis. However, the exact molecular mechanisms triggered by oxidative stress in photoreceptor cell death remain undefined. Here, we demonstrate that the sphingolipid ceramide is the key mediator of oxidative stress-induced apoptosis in 661W retinal photoreceptor cells. Treatment of 661W cells with the nitric oxide donor, sodium nitroprusside, activates acid sphingomyelinase. As a result, sphingomyelin is hydrolysed, which leads to an increase in the concentration of ceramide. We also show that ceramide is responsible for the activation of the mitochondrial apoptotic pathway in 661W photoreceptor cells and subsequent activation of the caspase cascade. Furthermore, we show for the first time that ceramide is responsible for the increased Ca2+ levels in the mitochondria and cytosol that precedes activation of the calpain-mediated apoptotic pathway. Additionally, we provide evidence that ceramide also activates the endolysosomal protease cathepsin D pathway. In summary, our findings show that ceramide controls the cell death decisions in photoreceptor cells and highlight the relevance of acid sphingomyelinase as a potential therapeutic target for the treatment of retinal pathologies.  相似文献   

3.
Lipopolysaccharide (LPS) and interferon-gamma (IFN) treatment of C6 rat glioma cells increased the intracellular ceramide level and the expression of the inducible nitric oxide synthase (iNOS) gene. To delineate the possible role of ceramide in the induction of iNOS, we examined the source of intracellular ceramide and associated signal transduction pathway(s) with the use of inhibitors of intracellular ceramide generation. The inhibitor of neutral sphingomyelinase (3-O-methylsphingomyelin, MSM) inhibited the induction of iNOS, whereas inhibitor of acidic sphingomyelinase (SR33557) or that of ceramide de novo synthesis (fumonisin B1) had no effect on the induction of iNOS. MSM-mediated inhibition of iNOS induction was reversed by the supplementation of exogenous C8-ceramide, suggesting that ceramide production by neutral sphingomyelinase (nSMase) is a key mediator in the induction of iNOS. The MSM-mediated inhibition of iNOS gene expression correlated with the decrease in the activity of ras. Inhibition of co-transfected iNOS promoter activity by dominant negative ras supported the role of ras in the nSMase-dependent regulation of iNOS gene. NF-kappaB DNA binding activity and its transactivity were also reduced by MSM pretreatment, and were completely reversed by the supplementation of C8-ceramide. As the dominant negative ras also reduced NF-kappaB transactivity, NF-kappaB activation may be downstream of ras. Our results suggest that ceramide generated by nSMase may be a critical mediator in the regulation of iNOS gene expression via ras-mediated NF-kappaB activation under inflammatory conditions.  相似文献   

4.
We previously reported that incubation of bone-marrow derived macrophages in the absence of macrophage-colony stimulating factor (M-CSF), a cytokine that is essential for their growth and survival, resulted in stimulation of acid sphingomyelinase, accumulation of ceramides, and induction of apoptosis [A. Gomez-Munoz et al. 2004. Ceramide 1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45: 99–105]. Here, we show that alveolar NR8383 macrophages, which are not dependent on M-CSF for viability, undergo apoptosis when they are incubated in the absence of serum. NR8383 cells showed increased levels of ceramides under apoptotic conditions, but in contrast to bone marrow macrophage acid and neutral sphingomyelinases were only slightly activated. We found that the major mechanism for ceramide generation in NR8383 macrophages was stimulation of their synthesis de novo. This action involved activation of serine palmitoyltransferase (SPT), the key regulatory enzyme of this pathway. A relevant finding was that ceramide 1-phosphate (C1P) inhibited SPT activity and ceramide accumulation leading to inhibition of apoptosis. Furthermore, C1P enhanced the activity of antiapoptotic protein kinase B and its downstream effector nuclear factor kappa B. These observations add a new dimension to the understanding of the pro-survival actions of C1P in mammalian cells.  相似文献   

5.
The effect of lead on cellular iron metabolism has been investigated using human erythroleukemia (K562) cells. When the cells were cultured with 100 m Pb2+ for 48 h, the rate of cellular iron uptake from transferrin decreased to 46% of that in untreated cells. Scatchard analysis of the binding data revealed that this reduction was the result of a decrease in the number of transferrin receptors rather than an alteration in ligand-receptor affinity. The results of immunoprecipitation of transferrin receptors on the cell surface also confirmed the decreased expression of transferrin receptors by lead-treated cells. The down-regulation of transferrin receptors by treatment with lead did not result from a decrease in the total amount of the receptor, as determined by immunoblotting. Moreover, the biosynthesis of the receptor was unaffected by lead treatment. Thus, the down-regulation of surface transferrin receptors in lead-treated cells might be due to a redistribution of receptors rather than an actual loss of receptors from the cell. Using kinetic analysis, it was shown that redistribution of the receptor did not result from the alteration in the rates of transferrin receptor recycling. A comparison of the amounts of transferrin receptor on the cell surface and in the cycling pool revealed that the sequestration of the receptor from normal flow through the cycle might cause down-regulation of the surface receptor.  相似文献   

6.
The endocytosis and recycling of the human transferrin receptor were evaluated by several experimental modalities in K562 cells perturbed with 10(-5) M monensin. The work presented is an extension of a previous study demonstrating both complete inhibition of release of internalized human transferrin and a 50% reduction in the number of cell surface transferrin binding sites in K562 cells treated with monensin (Stein, B. S., Bensch, K. G., and Sussman, H. H. (1984) J. Biol. Chem. 259, 14762-14772). The data directly reveal the existence of two distinct transferrin receptor recycling pathways. One pathway is monensin-sensitive and is felt to represent recycling of transferrin receptors through the Golgi apparatus, and the other pathway is monensin-resistant and most likely represents non-Golgi-mediated transferrin receptor recycling. A transferrin-free K562 cell culture system was developed and used to demonstrate that cell surface transferrin receptors can be endocytosed without antecedent ligand binding, indicating that there are factors other than transferrin binding which regulate receptor internalization. Evidence is presented suggesting that two transferrin receptor recycling pathways are also operant in K562 cells under ligand-free conditions, signifying that trafficking of receptor into either recycling pathway is not highly ligand-dependent.  相似文献   

7.
Ultraviolet light (UV) activates an acid sphingomyelinase (ASMase) pathway, which hydrolyzes sphingomyeline to ceramide. Ceramide has been found to be a second messenger, which activates the c-jun N-terminal kinase (JNK) that is required for apoptotic cell death. However, the role of ceramide in UV-induced JNK activation and apoptosis remains controversial. In this study, we examined the correlation among ceramide production, JNK activation and cell apoptosis after UV-irradiation in three cell lines: 293 (kidney), Jurkat (lymphocytes) and MCF-7 (breast) were used in this study. The ceramide production was analyzed using the diacylglycerol kinase assay method. The JNK activation was measured by Western blot analysis using an antibody specifically recognizing phosphorylated JNK. Cell apoptosis was determined by morphological change or flow cytometry. Our data show that UV-irradiation induces ceramide production in both 293 and Jurkat cells. Inhibition of ceramide production by desipramine (25–50 M) reduced UV-induced JNK activation in both 293 and Jurkat cells; and protects 293 cells from UV-induced apoptosis. However, inhibition of ceramide production does not prevent Jurkat cells from UV-induced apoptosis. In addition, our data demonstrates that UV-irradiation induces JNK activation and apoptosis of MCF-7 cells without production of detectable amounts of ceramide after UV-irradiation. These results suggest that UV-induced JNK activation and apoptosis can be mediated through a ceramide dependent or an independent pathway.  相似文献   

8.
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH.These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.  相似文献   

9.
Uropathogenic Escherichia coli attach to epithelial cells through P fimbriae that bind Galα1-4Galβ-oligosaccharide sequences in cell surface glycosphingolipids. The binding of P-fimbriated E. coli to uroepithelial cells causes the release of ceramide, activation of the ceramide signalling pathway and a cytokine response in the epithelial cells. The present study examined the molecular source of ceramide in human kidney A498 cells exposed to P-fimbriated E. coli . Agonists such as TNF-α and IL-1β released ceramide from sphingomyelin by the activation of endogenous sphingomyelinases and hydrolysis of sphingomyelin, and triggered an IL-6 response. P-fimbriated E. coli caused a slight increase in endogenous sphingomyelinase activity, but there was no associated sphingomyelin hydrolysis. Instead, the concentration of galactose-containing glycolipids decreased. We propose that P-fimbriated E. coli differ from other activators of the ceramide pathway, in that release of ceramide is from receptor glycolipids and not from sphingomyelin. Receptor breakdown may be an efficient host defence strategy, as it reduces the concentration of cell surface receptors, releases soluble receptor analogues and activates an inflammatory response.  相似文献   

10.
The fungal metabolite brefeldin A (BFA) induces profound alterations in the morphology of intracellular organelles. Although BFA promotes the formation of extensive tubular endosomal domains, our understanding of the effects of the antibiotic on vesicle traffic events associated with endocytosis is limited. Thus, alterations in the transferrin (Tf) receptor's endocytic/recycling pathway upon treatment of human erythroleukemia K562 cells with BFA were studied as a pharmacological response. Treatment of K562 cells with BFA caused a down-regulation in the number of cell surface Tf receptors. This effect is highly reminiscent of the well-known action of phorbol 12-myristate 13-acetate (PMA) on Tf receptor traffic in K562 cells. However, our results demonstrate that these two agents down-regulate the Tf receptor via different mechanisms. The effects of BFA and PMA were additive when K562 cells were incubated with both together. Using the In/Sur method, the endocytic rate constant for Tf internalization was determined and PMA was found to greatly enhance ke, from 0.28 min–1 to 0.43 min–1, while BFA had little effect (Ke=0.20 min–1). In contrast, BFA-treatment alters the exocytic rate constant for return of internalized receptors to the cell surface, with the largest effect exerted on a slow-release, monensin-sensitive, compartment. The sum of the endocytic and exocytic kinetic data support a model in which BFA and PMA down-regulate the Tf receptor in K562 cells by mechanistically distinct actions, with BFA targeting exocytic monensin-sensitive intracellular compartments and PMA acting to exert a profound influence on elements of receptor internalization.Abbreviations BFA brefeldin A - ARF ADP-ribosylation factor - HRP horseradish peroxidase - Tf transferrin - PMA phorbol 12-myristate 13-acetate - DMSO dimethyl sulfoxide - PBS phosphate-buffered saline - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - BSA bovine serum albumin - FITC-Tf fluorescein isothiocyanate-labelled transferrin  相似文献   

11.
The internalization of proteins plays a key role in cell development, cell signaling and immunity. We have previously developed a specific hybridization internalization probe (SHIP) to quantitate the internalization of proteins and particles into cells. Herein, we extend the utility of SHIP to examine both the endocytosis and recycling of surface receptors using flow cytometry. SHIP was used to monitor endocytosis of membrane‐bound transferrin receptor (TFR) and its soluble ligand transferrin (TF). SHIP enabled measurements of the proportion of surface molecules internalized, the internalization kinetics and the proportion and rate of internalized molecules that recycle to the cell surface with time. Using this method, we have demonstrated the internalization and recycling of holo‐TF and an antibody against the TFR behave differently. This assay therefore highlights the implications of receptor internalization and recycling, where the internalization of the receptor‐antibody complex behaves differently to the receptor‐ligand complex. In addition, we observe distinct internalization patterns for these molecules expressed by different subpopulations of primary cells. SHIP provides a convenient and high throughput technique for analysis of trafficking parameters for both cell surface receptors and their ligands.   相似文献   

12.
Previously, we found that exposure to a 50-Hz magnetic field (MF) could induce epidermal growth factor receptor (EGFR) clustering and phosphorylation on cell surface. In order to explore the possible mechanisms, the roles of acid sphingomyelinase (ASMase) and lipid raft in MF-induced EGFR clustering were investigated in the present study. Human amnion epithelial (FL) cells were exposed to a 50-Hz MF at 0.4?mT for different durations. Intracellular ASMase activity was detected using the Amplex® Red Sphingomyelinase Assay Kit. EGFR clustering, ASMase, and lipid rafts on cell membrane were analyzed using confocal microscopy after indirect immunofluorescence staining. Results showed that disturbing lipid rafts with nystatin could inhibit MF-induced EGFR clustering, indicating that it was dependent on intact lipid raft. Exposure of FL cells to MF significantly enhanced ASMase activity and induced ASMase translocation to membrane that co-localized with lipid rafts. Treatment with imipramine, an ASMase inhibitor, inhibited the MF-induced EGFR clustering. This inhibitory effect could be blocked by the addition of C2-ceramide in the culture medium. It suggested that ASMase mediated the 50-Hz MF-induced EGFR clustering via ceramide which was produced from hydrolyzation on lipid rafts.  相似文献   

13.
The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains.  相似文献   

14.
Summary The present study examines events of the Sertoli cell iron delivery pathway following the secretion of diferric testicular transferrin (tTf) into the adluminal compartment of the rat seminiferous epithelium. The unidirectional secretion of tTf by Sertoli cells was verified, in vivo, and it was shown that this protein is internalized by adluminal germ cells. It was further determined by Scatchard analysis that this internalization was mediated by high affinity transferrin binding sites on the surface of round spermatids, numbering 1453/cell and displaying a Kd=0.6×10-9 M. Northern blot analysis of RNA isolated from adluminal germ cells, namely spermatocytes, round spermatids and elongating spermatids, indicated that these cells expressed Tf receptor mRNA and ferritin mRNA in levels inversely related to their stage of maturation. Finally it was determined that following binding and internalization in round spermatids, Tf became associated with the endosomal compartment and was recycled back to the cell surface. This study illustrates the immediate fate of tTf once it is secreted by the Sertoli cell. Thus, diferric tTf binds of Tf receptor on the surface of adluminal germ cells, is internalized by receptor-mediated endocytosis and the apo Tf-Tf receptor complex is recycled back to the cell surface where apotTf is released into the adluminal fluid.  相似文献   

15.
Sphingomyelinase activity against pure sphingomyelin monolayers is constant up to a surface pressure of 18 mN/m and falls above it. Sphingomyelinase- and phospholipase A2-mediated phosphohydrolytic pathways are mutually modulated by the presence of their respective substrates and products. At 15 mN/ m non-substrate lipids such as ceramide at a mole fraction of 0·1 in mixed films with the pure substrate, inhibit the sphingomyelinase activity. Ganglioside GM1, another ceramide-containing complex sphingolipid, also inhibits sphingomyelinase activity, while a chemically related glycosphingolipid such as asialo-GM1 has no effect. The activity is unaltered by dipalmitoylphosphatidylcholine and by an equimolar mixture of its products of hydrolysis by phospholipase A2, fatty acid and lysoderivative, but it is inhibited by only one of them or by dilauroylphosphatidylcholine. Phospholipase A2 is inhibited by sphingomyelin, and activated by ceramide and by palmitic acid, one of the products of its own phosphohydrolytic reaction.  相似文献   

16.
Anticancer phospholipids that inhibit Akt such as the alkylphospholipid perifosine (Per) and phosphatidylinositol ether lipid analogs (PIAs) promote cellular detachment and apoptosis and have a similar cytotoxicity profile against cancer cell lines in the NCI60 panel. While investigating the mechanism of Akt inhibition, we found that short-term incubation with these compounds induced rapid shedding of cellular nanovesicles containing EGFR, IGFR and p-Akt that occurred in vitro and in vivo, while prolonged incubation led to cell detachment and death that depended on sphingomyelinase-mediated generation of ceramide. Pretreatment with sphingomyelinase inhibitors blocked ceramide generation, decreases in phospho-Akt, nanovesicle release and cell detachment in response to alkylphospholipids and PIAs in non-small cell lung cancer cell lines. Similarly, exogenous ceramide also decreased active Akt and induced nanovesicle release. Knockdown of neutral sphingomyelinase decreased, whereas overexpression of neutral or acid sphingomyelinase increased cell detachment and death in response to the compounds. When transferred in vitro, PIA or Per-induced nanovesicles increased ceramide levels and death in recipient cells. These results indicate ceramide generation underlies the Akt inhibition and cytotoxicity of this group of agents, and suggests nanovesicle shedding and uptake might potentially propagate their cytotoxicity in vivo.  相似文献   

17.
Airway epithelial cells are constantly exposed to environmental insults such as air pollution or tobacco smoke that may contain high levels of reactive nitrogen and reactive oxygen species. Previous work from our laboratory demonstrated that the reactive oxygen species (ROS), hydrogen peroxide (H(2)O(2)), specifically activates neutral sphingomyelinase 2 (nSMase2) to generate ceramide and induce apoptosis in airway epithelial cells. In the current study we examine the biological consequence of exposure of human airway epithelial (HAE) cells to reactive nitrogen species (RNS). Similar to ROS, we hypothesized that RNS may modulate ceramide levels in HAE cells and induce apoptosis. We found that nitric oxide (NO) exposure via the NO donor papa-NONOate, failed to induce apoptosis in HAE cells. However, when papa-NONOate was combined with a superoxide anion donor (DMNQ) to generate peroxynitrite (ONOO(-)), apoptosis was observed. Similarly pure ONOO(-)-induced apoptosis, and ONOO(-)-induced apoptosis was associated with an increase in cellular ceramide levels. Pretreatment with the antioxidant glutathione did not prevent ONOO(-)-induced apoptosis, but did prevent H(2)O(2)-induced apoptosis. Analysis of the ceramide generating enzymes revealed a differential response by the oxidants. We confirmed our findings that H(2)O(2) specifically activated a neutral sphingomyelinase (nSMase2). However, ONOO(-) exposure did not affect neutral sphingomyelinase activity; rather, ONOO(-) specifically activated an acidic sphingomyelinase (aSMase). The specificity of each enzyme was confirmed using siRNA to knockdown both nSMase2 and aSMase. Silencing nSMase2 prevented H(2)O(2)-induced apoptosis, but had no effect on ONOO(-)-induced apoptosis. On the other hand, silencing of aSMase markedly impaired ONOO(-)-induced apoptosis, but did not affect H(2)O(2)-induced apoptosis. These findings support our hypothesis that ROS and RNS modulate ceramide levels to induce apoptosis in HAE cells. However, we found that different oxidants modulate different enzymes of the ceramide generating machinery to induce apoptosis in airway epithelial cells. These findings add to the complexity of how oxidative stress promotes lung cell injury.  相似文献   

18.
During apoptosis of human glioma cells induced by anti-Fas antibody, ceramide formation with activation of acid, but not neutral sphingomyelinase (SMase), was observed. A potent inhibitor of acid SMase, SR33557, effectively inhibited ceramide formation and apoptosis. Fas-induced apoptosis and ceramide formation proceeded regardless of p53 status. The agents, which modify intracellular levels of reactive oxygen species (ROS) and reduced glutathione (GSH), failed to modulate Fas-induced acid SMase activation and apoptosis. Moreover, expression of functional p53 protein using a temperature-sensitive human p53val(138) induced ceramide generation by activation of neutral SMase but not acid SMase through ROS formation. Peptide inhibitors for caspases-8 (z-IETD-fmk) and -3 (z-DEVD-fmk) suppressed Fas-induced apoptosis. However, activation of acid SMase was inhibited only by z-IETD-fmk. Thus, ceramide generated by acid SMase may take a part in Fas-induced apoptosis of human glioma cells and acid SMase activation may be dependent on caspase-8 activation, but not on p53 nor ROS.  相似文献   

19.
The intracellular movement of cell surface transferrin receptor (TfR) after internalization was studied in K562 cultured human erythroleukemia cells. The sialic acid residues of the TfR glycoprotein were used to monitor transport to the Golgi complex, the site of sialyltransferases. Surface-labeled cells were treated with neuraminidase, and readdition of sialic acid residues, monitored by isoelectric focusing of immunoprecipitated TfR, was used to assess the movement of receptor to sialyltransferase-containing compartments. Asialo-TfR was resialylated by the cells with a half-time of 2-3 h. Resialylation occurred in an intracellular organelle, since it was inhibited by treatments that allow internalization of surface components but block transfer out of the endosomal compartment. Moreover, roughly half of the resialylated molecules were cleaved when cells were retreated with neuraminidase after culturing, indicating that this fraction of the molecules had returned to the cell surface. These results suggest that TfR is transported from the cell surface to the Golgi complex, the intracellular site of sialyltransferases, and then returns to the cell surface. This pathway, which has not been previously described for a cell surface receptor, may be different from the route followed by TfR in iron uptake, since reported rates of transferrin uptake and release are significantly more rapid than the resialylation of asialo-TfR.  相似文献   

20.
Despite the role of sphingolipid/cholesterol rafts as signaling platforms for Fcgamma receptor II (FcgammaRII), the mechanism governing translocation of an activated receptor toward the rafts is unknown. We show that at the onset of FcgammaRII cross-linking acid sphingomyelinase is rapidly activated. This enzyme is extruded from intracellular compartments to the cell surface, and concomitantly, exofacially oriented ceramide is produced. Both non-raft and, to a lesser extent, raft sphingomyelin pools were hydrolyzed at the onset of FcgammaRII cross-linking. The time course of ceramide production preceded the recruitment of FcgammaRII to rafts and the receptor phosphorylation. Exogenous C(16)-ceramide facilitated clustering of FcgammaRII and its association with rafts. In contrast, inhibition of acid sphingomyelinase diminished both the ceramide generation and clustering of cross-linked FcgammaRII. Under these conditions, tyrosine phosphorylation of FcgammaRII and receptor-accompanying proteins was also reduced. All the inhibitory effects were bypassed by treatment of cells with exogenous ceramide. These data provide evidence that the generation of cell surface ceramide is a prerequisite for fusion of cross-linked FcgammaRII and rafts, which triggers the receptor tyrosine phosphorylation and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号