首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The collection efficiencies of commonly used membrane air sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10–400 nm. Test aerosols were nebulized and introduced into a calm air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min?1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS). Three different filters of each type with at least three repetitions for each pore size were tested. In general, the collection efficiency varied with airflow, pore size, and sampling duration. In addition, both collection efficiency and pressure drop increased with decreased pore size and increased sampling flow rate, but they differed among filter types and manufacturer. The present study confirmed that the MCE, PTFE, and PVC filters have a relatively high collection efficiency for challenge particles much smaller than their nominal pore size and are considerably more efficient than polycarbonate and silver membrane filters, especially at larger nominal pore sizes.  相似文献   

2.
The performance of electrostatically charged blown microfiber filter media was characterized for high-volume sampling applications. Pressure drop and aerosol collection efficiency were measured at air pressures of 55.2 and 88.7 kilopascals (kPa) and filter face velocities ranging from 2.5 to 11.25 meters per second (m/s). Particle penetration was significant for particles above 0.5 micrometers (μm) in aerodynamic diameter where the onset of particle rebound was observed as low as 200 nanometers (nm). Particle retention was enhanced by treating filters in an aqueous solution of glycerol. Adding this retention agent eliminated electrostatic capture mechanisms but mitigated inertial rebound. Untreated filters had higher nanoparticle collection efficiencies at lower filter face velocities where electrostatic capture was still significant. At higher filter face velocities, nanoparticle collection efficiencies were higher for treated filters where inertial capture was dominant and particle rebound was mitigated. Significant improvements to microparticle collection efficiency were observed for treated filters at all air flow conditions. At high air pressure, filter efficiency was greater than 95% for particles less than 5 μm. At low air pressure, performance enhancements were not as significant since air velocities were significantly higher through the fiber mat. Measured single fiber efficiencies were normalized by the theoretical single fiber efficiency to calculate adhesion probability. The small fiber diameter (1.77 μm) of this particular filter gave large Stokes numbers and interception parameters forcing the single fiber efficiency to its maximum theoretical value. The adhesion probability was plotted as a function of the ratio of Stokes and interception parameter similar to the works of others. Single fiber efficiencies for inertial nanoparticle collection were compared to existing theories and correlations.

Copyright 2014 American Association for Aerosol Research  相似文献   


3.
The surface and overall collection efficiencies of capillary pore membrane filters were measured for sub-micrometer particles. Collection efficiencies were derived from the surface loadings of particles on filters measured by scanning electron microscopy and from airborne particle concentrations measured with a scanning mobility particle sizer. Tests used filters with nominal pore diameters of 0.4 and 0.8 μm and face velocities of 3.7 and 18.4 cm/s. Surface collection efficiencies were below 100% for particles smaller than 316 nm and below 55% for particles smaller than 100 nm. Overall collection efficiencies reached as low as 45% for 70 nm particles. For nanoparticles, collection efficiencies overall were substantially higher than those to the filter surface, indicating that deposition occurs to a large extent inside the filter pores. These results underscore the need to account for surface collection efficiency when deriving airborne concentrations from microscopic analysis of nanoparticles on capillary pore membrane filters.  相似文献   

4.
Fibrous filters are highly efficient in removing micrometer particles, but their performance in the nanometer particle range is still little known. The aim of this study was to evaluate pressure drop and collection efficiency during nanoparticles cake formation using commercial fibrous filters. The filter media used were High Efficiency Particulate Air (HEPA) and polyester filters. The aerosols were generated by a commercial inhaler using a 5 g/L solution of NaCl and the particles produced were in the size range from 6 to 800 nm, with a peak at around 40 nm. A superficial velocity (vs) of 0.06 m/s was employed. During the filtration, the maximum pressure drop established was ?P = ?Pf +980Pa, where ?Pf is the initial pressure drop of the filter. The collection efficiency was determined for a clean filter and for intermediate pressure drops. The filtration curves obtained showed that the HEPA filter provided greater surface filtration, compared to the polyester filter. Comparison of the collection efficiencies for clean filters revealed that the HEPA filter was highly efficient, even in the absence of cake, while the polyester filter showed initial collection efficiencies of between 20 and 40% for particles in the size range from 100 nm to 1000 nm. However, after formation of the filter cake, the collection efficiencies of both filters were almost 100% during the final stage of filtration. This shows that the fibrous filter can be applied in several industrial processes with highly efficient nanoparticle separation, after the formation of a thin layer cake filtration.  相似文献   

5.
Porous polyurethane foam was evaluated to replace the eight nylon meshes used as a substrate to collect nanoparticles in the Nanoparticle Respiratory Deposition (NRD) sampler. Cylindrical (25 mm diameter by 40 mm deep) foam with 100 pores per inch was housed in a 25-mm-diameter conductive polypropylene cassette cowl compatible with the NRD sampler. Pristine foam and nylon meshes were evaluated for metals content via elemental analysis. The size-selective collection efficiency of the foam was evaluated using salt (NaCl) and metal fume aerosols in independent tests. Collection efficiencies were compared to the nanoparticulate matter (NPM) criterion and a semi-empirical model for foam. Changes in collection efficiency and pressure drop of the foam and nylon meshes were measured after loading with metal fume particles as measures of substrate performance. Substantially less titanium was found in the foam (0.173 µg sampler?1) compared to the nylon mesh (125 µg sampler?1), improving the detection capabilities of the NRD sampler for titanium dioxide particles. The foam collection efficiency was similar to that of the nylon meshes and the NPM criterion (R2 = 0.98, for NaCl), although the semi-empirical model underestimated the experimental efficiency (R2 = 0.38). The pressure drop across the foam was 8% that of the nylon meshes when pristine and changed minimally with metal fume loading (~19 mg). In contrast, the pores of the nylon meshes clogged after loading with ~1 mg metal fume. These results indicate that foam is a suitable substrate to collect metal (except for cadmium) nanoparticles in the NRD sampler.

Copyright © 2016 American Association for Aerosol Research  相似文献   

6.
The purpose of this study was to improve the efficiency of filters used in asbestos control systems, such as those used at asbestos removal sites. We evaluated the melt-blown (MB) filter media for their asbestos removal efficiencies. The filter grades were based on the ISO and European standards (EN 1822) of E12 (≥99.5% collection efficiency) and H13 (≥99.95% collection efficiency) with a size of <0.2?μm asbestos diameter. Based on test chamber experiments, the asbestos removal efficiency of the grade H13?MB filter (99.974%) was higher than that of the E12 grade MB filter (97.120%). In addition, the lowest level of pressure drop was observed in the case with a 3.8?mm pitch interval. The concentrations of airborne asbestos based on phase contrast microscopy in the sites with asbestos concentrations presenting high risks before turning on the asbestos control system was 0.038 fiber cm?3 at demolition site A and 0.027 fiber cm?3 at demolition site B. Chrysotile asbestos was detected at both demolition sites A and B before turning on the system, but were not detected after using the system. Therefore, MB filters present an efficient alternative to current commercial filters and should be considered for use in asbestos removal applications.

© 2018 American Association for Aerosol Research  相似文献   

7.
Abstract

A new type of resin wool filter (RWF) that persists the load with oil droplets was developed by Kimura and colleagues. In the present work, the initial collection performances of RWF (A and C) are measured for various particle sizes (0.03, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 μm) with different charging states at various filtration velocities (0.05, 0.1, 0.15, and 0.3 m/s). As a result, it is shown that the present RWF impregnated with PTBP resin can attain high collection efficiency (99.999% at filtration velocity of 0.05 m/s) with a pressure drop of less than 30 Pa. The charge density is estimated by applying prediction equations of single-fiber collection efficiencies of electret filters with a dipolar charge distribution because no other prediction equation for RWF are available at present. The experimental single-fiber efficiencies for uncharged particles are successfully predicted by assigning a single value of charge density in the prediction equations for dipolar fibers. The estimated charge density on RWF fibers is 2.1 × 10? 4 C/m2, which is much higher than those of conventional electret filter media. Therefore, RWF studied in the present work is suitable for the application to respirators as well as room air cleaners.  相似文献   

8.
The performance of filters made of sintered submicron alumina particles was evaluated. The filter has a high collection efficiency and high pressure drop, requiring the development of a special measuring system for its evaluation. The system consists of a polydisperse NaCl particle generator, a differential mobility analyzer (DMA), an ejector to supply aerosols for testing filters with high pressure drop, and a mixing-type condensation nucleus counter (CNC) capable of obtaining a stable reading of very low concentration particles. Penetrations as low as 10−9 can be measured in the particle diameter range of 0.02-0.14 μm. Two filters made by sintering 0.60 and 0.84 μm alumina particles were evaluated. The experimental data collected served as the basis of theoretical development. Following the single fibre theory, the filter penetration is calculated by using a single sphere as the element. Both the diffusion and interception collection mechanisms were taken into account. The resulting equation gives a general trend of efficiency curves as a function of the parameters involved, e.g. the test aerosol size, packed particle size and filtration velocity. However, it is not sufficiently accurate for providing quantitative performance results.  相似文献   

9.
Scanning (SEM) as well as transmission electron microscopy (TEM) have been proved to be suitable methods for the characterization of different aerosol filters.

An equipment and a standardized procedure are described for a qualitative and quantitative evaluation of different characteristics for high efficiency aerosol filters. Solid aerosols, incl. radiolabeled aerosols, are used for this evaluation. The test aerosol is sampled in the up- and downstream on Nuclepore filters. By means of SEM- and TEM-methods aerosol concentrations, particle size distributions, particle forms and chemistry or radioactivity are measured on both Nuclepore filters. The total and the selective penetration and collection efficiencies are then estimated for particles of different sizes, forms, chemical composition and radioactivities. The SEM-procedure can also supply very useful information about deposition mechanisms of particles on the surface and inside the tested filter, about the clogging mechanism, about filter corrosion or destruction, etc.  相似文献   


10.
Experimental filtration data were collected in an effort to validate an impaction model previously developed and presented. Using a sampler with a 9.5 μm pore diameter Nuclepore filter, collection efficiencies were measured for both liquid and solid aerosols over a size range of 2–9 μm. Data for the liquid aerosol showed good agreement with the impaction model; however, data for the solid aerosol indicated an appreciably lower collection efficiency than predicted by the model. The liquid aerosol data validate the impaction model. The solid aerosol data indicate particle bounce or reintrainment subsequent to impact and underscore particle capture as a problem to be dealt with if the Nuclepore surface is to be used as a size selective filter.  相似文献   

11.
Aerosol collection efficiency was studied for electrostatically charged fibrous filters (3M Filtrete?, BMF-20F). In this study, collection efficiencies at moderate filter face velocities (0.5–2.5 m/s) representative of some high volume sampling applications was characterized. Experimental data and analytical theories of filter performance are less common in this flow regime since the viscous flow field assumption may not be representative of actual flow through the filter mat. Additionally, electrostatic fiber charge density is difficult to quantify, and measurements of aerosol collection efficiency are often used to calculate this fundamental parameter. The purpose of this study was to assess the relative influence of diffusion, inertial impaction, interception, and electrostatic filtration on overall filter performance. The effects of fiber charge density were quantified by comparing efficiency data for charged and uncharged filter media, where an isopropanol bath was used to eliminate electrostatic charge. The effects of particle charge were also quantified by test aerosols brought into the equilibrium Boltzmann charge distribution, and then using an electrostatic precipitator to separate out only those test particles with a charge of zero. Electrostatically charged filter media had collection efficiencies as high as 70–85% at 30 nm. Filter performance was reduced significantly (40–50% collection efficiency) when the electrostatic filtration component was eliminated. Experiments performed with zero charged NaCl particles showed that a significant increase in filter performance is attributable to an induction effect, where electrostatic fiber charge polarizes aerosol particles without charge. As filter face velocity increased the electrostatic filtration efficiency decreased since aerosol particles had less time to drift toward electrostatically charged fibers. Finally, experimental data at 0.5 m/s were compared to theoretical predictions and good agreement was found for both electrostatic and nonelectrostatic effects.

© 2013 American Association for Aerosol Research  相似文献   

12.
Neither the European standard nor the US standard for classification of intermediate class filters comprises testing of filter performance with respect to ultrafine particles (UFPs) or particles of the most penetrating size (MPPS). This could turn out to be a major lack in classification standards since UFPs have been pointed out as a serious health hazard. In this study, fractional efficiencies of eight new full-scale bag filters and twenty-three new filter medium samples were determined. The influence of air velocity and aerosol type was investigated, and correlations between efficiencies for UFPs (EFUFPs), MPPS-sized particles (EFMPPS) and 0.4 μm-sized particles (EF0.4μm) were established. The tested bag filters were challenged by four aerosol types: a neutralized atomized oil aerosol, the same oil aerosol but non-neutralized, a non-neutralized thermally generated oil smoke, and a “natural” indoor aerosol. The tests were carried out at different air velocities through the filter medium, ranging between 0.08 m/s and 0.22 m/s. The relationships that were observed between EFUFPs, EFMPPS, and EF0.4μm appeared to be linear within the observed filtration efficiency ranges. These relationships were similar regardless of the test aerosol type used, but somewhat different for glass fiber filters than for charged synthetic filters. Generally, EFMPPS was 10–20% lower than EF0.4μm. The influence of air velocity variations on the size resolved efficiency was determined. The glass fiber filters showed practically the same fractional efficiencies regardless of whether the test aerosol was neutralized or not. However, the charged synthetic filters showed substantially lower efficiencies when tested with the non-neutralized aerosol compared to the case when the aerosol was neutralized.

Copyright 2013 American Association for Aerosol Research  相似文献   

13.
We have developed new high efficiency particulate absorbing filter materials by bonding the fiber web with the help of high pressure water jets emerging from micron sized nozzles and subsequently coating the filters with a chemical binder. Two different types of nonwoven filters are produced by varying the water jet pressure during the bonding process. The performance characteristics of the filter materials are evaluated in terms of filtration parameters, such as filtration efficiency, dust holding capacity, and pressure drop. Filtration efficiency depends on the pore characteristics, namely pore size and their distribution in the filters. The developed filter materials have shown promising performance characteristics by capturing higher amount of dust particles with a relatively low pressure drop during use. These filter materials can be used for a wide range of industrial applications, where high filtration efficiency is required at low energy consumption. A fluid flow simulation is carried out by computational fluid dynamics (CFD) to understand flow pattern during the bonding process. The CFD is also used to predict the pressure drop in the nonwoven filter materials during filtration process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
《分离科学与技术》2012,47(3):477-491
Abstract

This investigation experimentally studied the penetration curve of particles that impact on a sintered stainless‐steel filter with various pore sizes, sampling flow rates and jet diameters. The penetration curves were compared to those with an aluminum foil substrate. Test data reveal that when the sintered stainless‐steel filter has larger pore sizes (100 µm or 40 µm), the particle penetration, P(%), is lower and the curve is less steep than that obtained from the aluminum foil substrate. The penetration curve of the sintered stainless‐steel filter with smaller pore size (5 µm) is close to that of the aluminum foil substrate. The dimensionless cutsize‐shift (the ratio of the dimensionless cutsize of sintered stainless‐steel filter to that of aluminum foil) falls as the pore sizes and the Reynolds number increase. Experimental data were then compared with theoretical results, and theory over‐predicted the dimensionless cutsize‐shift. Hence, a regression equation for the dimensionless cutsize‐shift is proposed by fitting the experimental data. The discrepancy between the experimental data and the regression prediction is within 4%. The regression equation can be used to predict the dimensionless cutsize for the size‐fractionated measurements of particles that impact on a sintered stainless‐steel filter with various sized pores and Reynolds numbers.  相似文献   

15.
A very compact cascade impactor with 2 L/min sampling flow rate has been developed. Its dimensions are 8.5 cm L x 5.0 cm W x 11.4 cm H, and it weighs 0.27 kg, with ten impaction stages with aerodynamic cutpoints in the range of 60 nm to 9.6 μm. The top eight stages, collecting particles down to 170 nm in aerodynamic diameter, can be used as a stand-alone impactor with a portable, battery-powered pump. Particle collection efficiencies were obtained with two types of commonly used substrates, aluminum foil and glass fiber filters. Impactor cutpoints with aluminum foil substrates agree well with conventional impactor theory. The efficiency curves are sharp with minimum overlap between them. Thus, the compact impactor design does not compromise its performance, making it suitable for general purpose applications where a lower sampling flow rate provides adequate mass collection. With glass fiber filter substrates, impactor cutpoints are smaller and the efficiency curves are less steep, in particular for the last stages. Also, the collection efficiency curves do not drop to near zero at small Stokes numbers. Instead, excess particle collection efficiency of around 10% is observed for the top six stages, and becomes higher for the last four stages. This is due to the collection of particles by filtration as the impinging jets penetrate the filter substrate. Thus, using glass fiber filter substrates should generally be avoided due to the non-ideal effect on the impactor collection efficiency curves, especially for the last two stages.

Copyright © 2018 American Association for Aerosol Research  相似文献   


16.
The main purpose of this study was to investigate experimentally the characteristics of an electrostatic cyclone/bag filter with inlet types (upper and bottom inlet) in order to overcome the low collection efficiency for submicron particles and high pressure drop, which were the main problems of general fabric bag filters. The experiment was performed to analyze the collection efficiency and pressure drop of the electrostatic cyclone/bag filter compared with that of conventional fabric bag filters with various experimental parameters such as the inlet type (upper and bottom), inlet velocity (filtration velocity) and applied voltages. From the results, the upper inlet type showed a slightly higher pressure drop reduction ratio as 40–90% than that of bottom inlet. In addition, the electrostatic cyclone/bag filter represented an increment of over 5% for the collection efficiency of submicron particles (around 1 Μm) in comparison with the general fabric filter. Presented at the Int’/Sym. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University.  相似文献   

17.
The gas‐solid two‐phase flows in fibrous filters were simulated by computational fluid dynamics (CFD) technology. The pressure drops and filter efficiencies with different operating conditions and geometry parameter, including face velocity, particle size, and solid volume fraction (SVF) were calculated. The effects of the operating conditions and geometry parameter on the filter performance of the fibrous filter were obtained. The results indicate that the pressure drop increases linearly with the face velocity and the predicted values of the pressure drops are in excellent agreement with the experimental correlation. Filtration efficiency decreases with the face velocity for submicrometer particles (0.1 μm) and, for larger particles (1 μm) the tendency is just the opposite. The filtration mechanism is different for different particle sizes. For the filter in this paper, when the particle size is smaller than 0.2 μm, Brownian diffusion plays a significant role in the filtration process. When the particle size is greater than 0.5 μm, inertial impaction becomes an important capture mechanism. For particle sizes in the range of 0.2–0.5 μm, the Brownian diffusion and inertial impaction are both relatively weak and, therefore, the filtration efficiency has the least value in this range. Additionally, the SVF distribution is an important geometry parameter in the filter. The filtration efficiency of the filter with a decreased SVF (geometry B) along the thickness of the filter is higher than that of the filter with the even SVF (geometry A), while maintaining a low pressure drop.  相似文献   

18.
A novel environmentally friendly co‐extrusion and multiplication technology in combination with a water jet procedure was utilized to produce dual‐component fibrous filters. Polyvinylidene fluoride (PVDF)/high‐density polyethylene (HDPE) systems were selected as the filter materials. The orientation procedure was shown to greatly enhance the mechanical properties of the fibers as well as the filters. These filters were found to have micron‐size pores, high porosity, and high surface areas. Various physical treatments were applied on these filters which decrease the filter pore size. It was found that filter pore size decreased to 0.2 μm and the mechanical properties were enhanced. Water flux tests and microparticle separation tests were performed on these filters to evaluate their microfiltration behavior. PVDF/HDPE filters exhibit high water flux with low pressure requirement, making them good candidates for microfiltration water filters. In addition, the PVDF/HDPE filters exhibit high separation efficiencies 90% on 1 μm particles, 96% on 2 μm particles, and 99% on 5 and 10 μm particles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45557.  相似文献   

19.
The silicon carbide (SiC) ceramic filter is the most favorable component to remove particulate matter from hot flue gas due to its high filtration efficiency and high thermal durability. The effect of SiC powder size on the physical properties and filtration performance to prepare high-performance granular ceramic filter media was investigated in this study. Disk-type filter media were prepared by mixing ceramic components followed by physical compression and sintering. The porosity and average pore diameter in the filter media increased with increasing powder size. However, the mechanical strength decreased with increasing powder size, while it increased with increasing physical compressive force. The filter performance factor, qFM was introduced to evaluate the ceramic filter properties, and the SiC50 filter was the best of the ceramic filters prepared in this study. We also found that diffusion was a dominant collection mechanism for particles smaller than 0.7 μm, and direct interception and inertia were dominant collection mechanisms for particles larger than 0.7 μm in the SiC50 filter based on a single collector efficiency model. In addition, the predicted collection efficiencies showed reasonably good agreement with the experimental ones.

Copyright 2014 American Association for Aerosol Research  相似文献   


20.
The most common method of filtration is via fibrous nonwoven media. Fibrous filters are generally characterized by their collection efficiency and pressure drop. Traditional computational studies in this area are typically based on unrealistic 2-D geometries with the fibers simply placed in a lattice (regular array) perpendicular to the flow. The traditional approaches however, do not permit studying the relation between the 3-D structure of a filter media and its performance. In this study, for the first time, a virtual 3-D web is generated based on the fiber orientation information obtained from analyzing microscopic images of lightweight spun-bonded filter media. Pressure drop and collection efficiency of our virtual filter are simulated and compared with the previous 2-D analytical and numerical models as well as experiment. Our pressure drop calculation, unlike the previous models, showed a perfect agreement with the predictions of the Davies’ empirical equation. The collection efficiencies obtained from simulating a thin spun-bonded filter media challenged with submicron particles having diameters ranging from 50 to 500 nm showed a similar trend as that of the previous 2-D models. For the solid volume fraction (SVF), filter thickness, and the fiber and particle diameters considered in this study, we found collection efficiencies higher than that of the above mentioned 2-D models with a relatively good agreement with experimental data obtained from a TSI 8130 filter tester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号