首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The polycrystalline sample of CaBa4SmTi3Nb7O30, a member of tungsten bronze family, was prepared by solid-state reaction method. X-ray diffraction analysis shows the formation of single-phase compound with an orthorhombic structure at room temperature. Scanning electron micrograph of the material shows uniform distribution of grains. Detailed studies of dielectric properties of the compound as a function of temperature at different frequencies suggest that the compound has a dielectric anomaly of ferroelectric to paraelectric type at 198°C, and exhibits non-relaxor kind of diffuse phase transition. The ferroelectric nature of the compound has been confirmed by recording polarization-electric field hysteresis loop. Piezoelectric and pyroelectric studies of the compound have been discussed in this paper. Electrical properties of the material have been analyzed using complex impedance technique. The Nyquist plots manifest the contribution of grain boundaries (at higher temperature), in addition to granular contribution (at all temperatures) to the overall impedance. The temperature dependence of dc conductivity suggests that the compound has negative temperature coefficient of resistance (NTCR) behaviour. The frequency dependence of ac conductivity is found to obey Jonscher’s universal power law. The observed properties have been compared with calcium free Ba5SmTi3Nb7O30 compound.  相似文献   

2.
Neodymium doped gadolinium manganate with general composition (Nd0.1Gd0.9Mn2O5) was prepared by co-precipitation method. Microstructural and compositional analysis has been carried out by X-ray diffraction and scanning electron microscopy. The optical studies have been carried out by Raman and FTIR. The electrical properties studied include dielectric constant, dielectric loss, ac conductivity and activation energy in the temperature range 20–400 ?°C. The shift in the dielectric peak towards higher temperature side with increasing frequency indicates frequency dispersion and suggesting the relaxational behaviour of the material. Frequency dependence of ac conductivity obeys the universal power law. The value of activation energy depends on increase in frequency. The room temperature magnetic behaviour has been analyzed from the magnetic field dependent magnetization curve. The grown material exhibits the paramagnetic behavior at room temperature.  相似文献   

3.
A new complex oxide (Na2Pb2Pr2W2Ti4Ta4O30) of tungsten bronze structural family has been synthesized by a high-temperature solid-state reaction (mixed-oxide) route at 1,050 °C. Room temperature structural analysis shows the formation of a single phase new compound. Study of microstructure of the pellet sample, recorded by scanning electron microscope, exhibits the uniform distribution of different size and shape of grains (with a few small voids) on the surface of the sample. Detailed studies of dielectric properties as a function of frequency and temperature show a dielectric anomaly above room temperature suggesting the existence of a ferroelectric phase transition in the material. Impedance spectroscopic analysis and electrical conductivity of the material exhibit a strong correlation between microstructure and electrical parameters. The temperature dependence of dc conductivity of the compound follows Arrhenius equation. The frequency and temperature dependence of ac conductivity (with fittings) shows the signature of Jonscher’s universal power law. The existence of non-exponential-type of conductivity relaxation in the compound was confirmed.  相似文献   

4.
The polycrystalline sample of Na1/2Nd1/2TiO3 was prepared by a high-temperature solid-state reaction technique. The formation of the compound was confirmed by both XRD and EDX studies. Preliminary structural analysis ofNa1/2Nd1/2TiO3 using X-ray diffraction data exhibits a tetragonal phase of the material at room temperature. The dielectric permittivity and the loss tangent of the pellet sample were obtained in a wide frequency range (1 kHz to 1 MHz) at different temperatures (30 °C to 425 °C). The dielectric anomaly at 114 °C, appearance of hysteresis loop and piezoelectric properties at room temperature confirmed the ferroelectric properties of the compound. Measurements of frequency and temperature dependence of impedance over a wide frequency range (100Hz–1MHz) were carried out by complex impedance spectroscopy as a non-destructive tool and indicate that the electrical properties of the material are strongly temperature dependent. Evidence of temperature dependence of electrical relaxation phenomenon as well as the negative temperature coefficient (NTC)-type of resistance behavior of the sample has also been observed. The dc conductivity graph follows the Arrhenius law. Studies of dielectric modulus suggest the non-Debye type of relaxation in the materials, which is supported by the impedance data.  相似文献   

5.
The polycrystalline sample of Nd3/2Bi3/2Fe5O12 was prepared by a high- temperature solid-state reaction technique. Preliminary X-ray structural analysis exhibits the formation of a single-phase tetragonal structure at room temperature. Microstructural analysis by scanning electron microscopy shows that the sintered sample has well defined grains. These grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric response at various frequencies and temperatures exhibit a dielectric anomaly at 400 °C. The electrical properties (impedance, modulus and conductivity) of the material were studied using a complex impedance spectroscopy technique. These studies reveal a significant contribution of grain and grain boundary effects in the material. The frequency dependent plots of modulus and the impedance loss show that the conductivity relaxation is of non-Debye type. Studies of electrical conductivity with temperature demonstrate that the compound exhibits Arrhenius-type of electrical conductivity. Study of ac conductivity with frequency suggests that the material obeys Jonscher’s universal power law.  相似文献   

6.
A lead free polycrystalline material Ba(Bi0.5Nb0.5)O3 was prepared using a high-temperature mixed oxide technique using high purity ingredients. The formation of the material in monoclinic crystal structure was confirmed by an X-ray structural analysis at room temperature. The nature and texture of microstructure by scanning electron microscopy show that the compound has well defined grains uniformly distributed throughout the surface of the sample. Detailed studies of dielectric and impedance properties of the material, carried out in the frequency range of (1 kHz–1 MHz) at different temperatures (30 °C to 475 °C), have shown many interesting properties. Dielectric study showed an existence of diffuse phase transition around 317 °C. The temperature dependence of impedance parameters (impedance, modulus etc.) of the material exhibits a strong correlation of its micro-structure (i.e., bulk, grain boundary, etc.) with the electrical parameters. An existence of negative temperature coefficient of resistance (NTCR) type behavior in the material similar to that of semiconductors was also observed. The complex electric modulus analysis indicates the existence of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The nature of variation of dc conductivity with temperature confirms the Arrhenius behavior of the material. The ac conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law. The temperature dependent pre-exponential factor (A) shows peak and frequency exponent (n) possesses a minimum at transition temperature.  相似文献   

7.
Bi2Fe2W3O15 was prepared in the polycrystalline form using a standard solid-state reaction technique in order to study its dielectric and electrical properties. The formation of a single-phase compound was confirmed by preliminary X-ray structural studies of the material. Studies of electrical properties (impedance, modulus and conductivity) of the compound over a wide range of temperature and frequency provide many interesting results. The impedance and modulus parameters were calculated using complex plane formalism, and suitable equivalent circuits have been proposed for different temperature and frequency regions. The nature of variation of ac conductivity with frequency at different temperatures obeys the Jonscher’s universal power law. The temperature-dependence of dc conductivity pattern follows the Arrhenius behavior.  相似文献   

8.
The 0.5(BiGd0.05Fe0.95O3)-0.5(PbZrO3) composite was synthesized by means of a high temperature solid-state reaction technique using high purity ingredients. Preliminary X-ray structural analysis confirms the formation of the composite. The dielectric constant and loss tangent have been studied. The impedance parameters have been measured using an impedance analyzer in a wide range of frequency (102–106 Hz) at different temperatures. The Nyquist plot suggests the contribution of bulk effect only and the bulk resistance decreases with a rise in temperature. Electrical impedance confirms the presence of grain effect and hopping mechanism in the electrical transport of the material. The dc conductivity increases with a rise of temperature. The frequency variation of ac conductivity shows that the compound obeys Jonscher’s universal power law and from Jonscher’s power law fit confirms the Small Polaron (SP) tunneling effect. Temperature dependence of dc and ac conductivity indicates that electrical conduction in the material is a thermally activated process.  相似文献   

9.
The polycrystalline sample of ZnFe2O4 was prepared by a high-temperature solid-state reaction technique. Preliminary X-ray diffraction studies of the compound showed the formation of a single-phase compound at room temperature. Studies of dielectric properties (εr, tan δ) of the above compound as a function of frequency in a wide temperature range show dielectric anomalies signifying existence of possible ferroelectric to paraelectric phase transition in the material. The confirmation of this assumption was made with observation of ferroelectric hysteresis loop at room temperature. Magnetic measurement exhibits anti-ferromagnetic nature of the sample. Studies of the zero-field cooled and the field-cooled magnetization in dc field provided the blocking temperature TB. The temperature dependence of electrical parameters (impedance, modulus, conductivity, etc.) of the material exhibits a strong correlation between the microstructure (i.e., bulk, grain boundary, etc.) and electrical parameters of the material. Detailed studies of impedance parameters have provided an insight into the electrical properties and understanding of types of relaxation process in the material. The temperature variation of dc resistivity/conductivity exhibits negative temperature coefficient of resistance behaviour of the material. The frequency dependence of ac conductivity suggests that the material obeys Jonscher’s universal power law.  相似文献   

10.
The polycrystalline sample of bismuth based-complex multiferroic of a composition Bi0.5Pb0.5Fe0.5Ce0.5O3 was prepared by a high-temperature solid-state reaction technique (calcinations temperature = 900 °C, sintering temperature = 960 °C, time = 4 h). Preliminary structural analysis using XRD data exhibits the formation of a single-phase compound. Studies of surface morphology of the ceramic sample of the compound, recorded at room temperature using a scanning electron microscope, show uniform distribution of grains of different size with few voids. Detailed studies of dielectric properties (εr, tan δ) supported the existence of multiferroic properties in the above complex system. The analysis of impedance parameters, recorded in a wide frequency (1 kHz–1 MHz) and temperature (room temperature to 450 °C) range of the material provide better understanding of (a) role of grains and grain boundaries in resistive and capacitative characteristics, (c) structure-properties relationship and (b) type of relaxation process occurred in the material. Study of temperature dependence of dc conductivity of the compound shows the existence of negative temperature coefficient of resistance in it. The nature of variation of ac conductivity with temperature of the material follows the Josher’s universal power law. Study of magneto-electric characteristics of the sample at room temperature has provided many useful and new data on magneto-electric coupling coefficient of different orders.  相似文献   

11.
This paper reports about the double phase transition (at 315 and 366 °C) in the polycrystalline sample of K2Pb2Sm2W2Ti4Nb4O30 prepared by a high-temperature solid-state reaction technique. The calcination temperature was decided based on thermogravimetry analysis. Room temperature X-ray structural analysis confirms the formation of a single phase compound. The surface morphology recorded by scanning electron microscope exhibits a uniform grain distribution with high density. Detailed studies on the nature of variation (1) of dielectric parameters with temperature, and (2) polarization with temperature confirmed the existence of ferroelectricity in the material at room temperature. The temperature dependence of dc conductivity shows a typical Arrhenius behavior. The frequency dependence of ac conductivity suggests that the material obeys Jonscher’s universal power law. The variation of current with temperature shows that the material has high pyroelectric co-efficient and figure of merit, thus making it useful for pyroelectric sensors.  相似文献   

12.
Barium orthovanadate (Ba3V2O8), a derivative of perovskite family has been prepared using a mixed-oxide technique. The room temperature X-ray diffraction analysis has confirmed the formation of a single phase compound in trigonal crystal structure. The study of microstructure by scanning electron microscopy shows that the compound has well defined grains, distributed uniformly throughout the surface. The studies of dielectric parameters (εr and tan δ) of the compound as a function of temperature at three different frequencies (100, 500, 1,000 kHz) exhibit that they are almost temperature independent at low and medium temperature ranges. Detailed studies of impedance and related parameters exhibit that the electrical properties of the material are strongly dependent on temperature, and bear a good correlation with its microstructures. The bulk resistance, evaluated from complex impedance spectra, is found to be decreasing with rise in temperature. It shows that the material has negative temperature co-efficient of resistance similar to that of semiconductors. The same behaviour has also been observed in the study of I–V characteristics of the material. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The nature of variation of dc conductivity with temperature confirms the Arrhenius behavior of the material. The ac conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher’s universal power law.  相似文献   

13.
Nanocrystalline SnO2 with a crystallite size of 3–4 and 5–6 nm has been prepared by a sol-gel process in aqueous solution. Its ac electrical conductivity has been measured in dry air at a temperature of 200°C. The observed frequency dependence of its conductivity has been interpreted in terms of the random potential barrier model. The data obtained indicate that the transport properties of the material are dominated by hopping conduction through disordered crystallite boundaries.  相似文献   

14.
The electrical properties of double perovskite Ho2NiTiO6 (HNT) are investigated by impedance spectroscopy in the temperature range 30–420 °C and frequency range 100 Hz to 1 MHz. The X-ray diffraction analysis reveals that the compound crystallizes in monoclinic phase. The imaginary part of impedance (Z″) as a function of frequency shows Debye type relaxation. The frequency dependence of Z″ peak is found to obey an Arrhenius law with an activation energy of 0.129 eV. Impedance data presented in the Nyquist plot (Z″ vs. Z′) are used to identify an equivalent circuit and to know the bulk and interface contributions. The complex impedance analysis of HNT exhibits the appearance of both the grain and grain-boundary contribution. The results of bulk ac conductivity as a function of temperature and frequency are presented. The activation energy (0.129 eV), calculated from the slope of log τ versus 103/T plot, is found to be the nearly same as calculated (0.130 eV) from dc conductivity. The frequency dependent conductivity spectra obey the power law.  相似文献   

15.
A polycrystalline sample of Ba5DyTi3V7O30 (BDTV) was prepared by a mixed-oxide method at 1,000 °C (sintering temperature). Preliminary X-ray structural analysis confirmed a single-phase formation of the compound. Scanning electron micrograph of the material show uniform distribution of grains of different shape and size on the surface of the sample. Detailed studies of dielectric properties in a wide range of temperature (30–400 °C) and frequencies (103–106 Hz) exhibit ferroelectric (diffuse) phase transition, which was confirmed by appearance of hysteresis loop at room temperature. Electrical properties (impedance properties) of the material were obtained using a complex impedance technique. The Nyquist plots confirmed the contribution of grain in the material. Studies of electrical conductivity (both dc and ac) over a wide temperature range suggest that the compound exhibits the negative temperature coefficient of resistance behavior. The ac conductivity spectra were found to obey Jonscher’s universal power law.  相似文献   

16.
The polycrystalline sample of K2Pb2Dy2W2Ti4Nb4O30 was synthesized by high—temperature solid—state reaction method (calcinations temperature ~1,050?°C and sintering temperature ~1,075?°C). The phase formation of the desired compound was confirmed by preliminary X-ray structural analysis. The scanning electron micrograph shows uniform plate and rod like grain distribution throughout the surface of the sample without much pores. Detailed studies of the nature of (1) variation of dielectric parameters with temperature (27–480?°C) and frequency (1?kHz–5?MHz) and (2) polarization (at three different temperatures) confirmed the existence of ferroelectricity in the material, with phase transition occurring at 316?°C. The temperature dependence of electrical parameters (impedance, modulus, conductivity, etc.) of the material exhibits a strong correlation between its micro-structure (i.e., bulk, grain boundary, etc.) and electrical properties. The nature of temperature dependent dc conductivity follows the Arrhenius equation, and reveals the negative temperature coefficient of resistance (NTCR) behaviour of the material. The material obeys Jonscher’s universal power law which is evident from the graphs of frequency dependence of ac conductivity.  相似文献   

17.
A ceramic oxide (NaDyTiO4), having layered perovskite structure, has been prepared by a standard high-temperature solid-state reaction technique. X-ray diffraction (XRD) studies have confirmed material formation under reported condition along with the presence of impurity (Na2Dy2Ti3O10) as the minor phase. Complex impedance spectroscopy (CIS) analysis has been carried out to investigate its microstructure and electrical properties as a function of frequency and temperature. CIS analysis has indicated that the electrical behavior of the material sample shows negative temperature coefficient of resistance (NTCR) typical to a semiconductor. Impedance studies have also indicated the presence of temperature dependent relaxation process in the material with a spread of relaxation time. The d.c. conductivity of the material as evaluated from the impedance spectrum has been observed to be ∼10−9 Scm−1 at room temperature (RT). It has been observed to increase as a function of temperature with a maximum of ∼10−5 Scm−1 at 550∘C. The conductivity variation shows a cross over from Mott-type hopping phenomena at lower temperatures to a thermally activated Arrhenius type behavior at high temperature.  相似文献   

18.
A new member of tungsten bronze family, Ba2Sr3DyTi3V7O30, was synthesized by a high-temperature solid-state reaction method. Studies of structural by X ray diffraction technique and micro-structural by scanning electron microscope brings out orthorhombic crystal structure and densely packed nonuniform grains for the above ceramic system. Detailed dielectric studies as a function of temperature (30–500?°C) at different frequencies (1–1,000?kHz) reveals diffuse-phase-transition and loss anomaly at 81?°C. Detailed studies of impedance parameters provide a better understanding of the electrical properties and type of relaxation processes in the material. Temperature variation of dc and ac conductivity shows that this compound exhibits negative temperature coefficient of resistance. The frequency variation of ac conductivity shows that the compound obeys Jonscher’s universal power law.  相似文献   

19.
Li2Pb2La2W2Ti4Nb4O30 complex ferroelectric oxide was prepared by using a high-temperature solid-state reaction method (calcination temperature, ~1100 °C and sintering temperature, ~1150 °C). Room temperature preliminary structural analysis shows formation of a single-phase compound. The nature of microstructure (i.e. grain distribution, presence of voids, grain size, etc) recorded using scanning electron microscope (SEM) clearly suggests the formation of high quality and density of pellet samples. Studies of temperature dependence of dielectric constant, tangent loss and polarization show the existence of ferroelectric phase transition in the material at high temperature (307 °C). Detailed studies of temperature dependence of electrical parameters (i.e. impedance (400?475 °C), modulus, conductivity, etc) of the material clearly suggest a strong correlation between its microstructure (i.e. bulk, grain boundary, etc) and electrical properties. The nature of temperature variation of d.c. conductivity showed an Arrhenius behaviour of the material. A signature of ionic conductivity in the material was observed in its a.c. conductivity spectrum. The nature of frequency dependence of a.c. conductivity of the material can be explained by Jonscher’s universal power law. Electrical transport properties of the material show existence of non-exponential type of conductivity relaxation.  相似文献   

20.
Polycrystalline sample of LiCa2Nb5O15 was prepared by a high-temperature solid-state reaction technique. Structural and microstructural characterizations were performed by X-ray diffraction (XRD) and scanning electron microscope (SEM). X-ray studies reveal that the material has orthorhombic structure at room temperature. Electrical properties of the material have been studied using a complex impedance spectroscopy (CIS) technique in a wide temperature (31–500 °C) and frequency (102–106 Hz) ranges. The complex impedance plots reveal the main contribution of bulk effects in it. The bulk resistance, evaluated from complex impedance spectrum, has been observed to decrease with rise in temperature showing a typical negative temperature coefficient of resistance (NTCR) behavior. Variation of dc conductivity (bulk) with temperature demonstrates that the compound exhibits Arrhenius type of electrical conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号