首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 841 毫秒
1.
The processes of degradation of 2,4-dichlorophenol (2,4-DCP) under the action of atmospheric pressure of dielectric barrier discharge (DBD) in oxygen were studied. It was shown that the degradation of 2,4-DCP proceeds efficiently. Degree of decomposition reaches 90%. The degradation kinetics of 2,4-DCP obeys the formal first-order kinetic law on concentration of 2,4-DCP. The effective rate constants depend weakly on the experimental conditions and are equal to ~0.2 s?1. Based on experimental data, the energy efficiency of decomposition of 2,4-DCP was determined. Depending on the conditions, the energy efficiency was in the range of (8–90) × 10?3 molecules per 100 eV. The composition of the products was studied by gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection-fourier transform infrared (ATR-FTIR) spectroscopy, electron spin resonance (ESR) spectroscopy and UV/Visible spectroscopy. It was shown that about ~20% of 2,4-DCP is converted to CO2, while the other part forms an organic film on the reactor wall. The substance formed is close to the carboxylic acids in chemical composition and exhibits electrical conductivity and paramagnetic properties. Almost all of the chlorine contained in the 2,4-DCP is released into the gas phase. The active species of the afterglow react with liquid hexane, forming the products of its oxidation. Some assumptions regarding the pathway of the process are discussed.  相似文献   

2.
Uniform cubic Ag@AgCl and Ag@AgBr plasmonic photocatalysts with side length of 0.7 µm were synthesized by a facile green route, in which a controllable double-jet precipitation technique was employed to fabricate homogeneous cubic AgCl and AgBr grains while a photoreduction process was used to produce Ag nanoparticles (NPs) on the surface of AgCl and AgBr grains. The synthesized samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy (DRS). The photocatalytic activities of Ag@AgCl and Ag@AgBr were compared using degradation of methyl orange (MO) dye and 2,4-dichlorophenol (2,4-DCP) under visible-light irradiation. Ag@AgBr showed higher photocatalytic activity for MO degradation but weaker activity for 2,4-DCP decomposition. Possible degradation mechanisms are proposed to interpret these contrary paradoxical experimental results.  相似文献   

3.
Oxidative transformations by the hydroxyl radical are significant in advanced oxidation processes for the breakdown of organic pollutants, yet mechanistic details of the reactions are lacking. A combination of experimental and computational methods has been employed in this study to elucidate the reactivity of the hydroxyl radical with the widely used herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). The experimental data on the reactivity of the hydroxyl radical in the degradation of the herbicide 2,4-D were obtained from gamma-radiolysis experiments with both (18)O-labeled and unlabeled water. These were complemented by computational studies of the (.)OH attack on 2,4-D and 2,4-DCP (2,4-dichlorophenol) in the gas phase and in solution. These studies firmly established the kinetically controlled attack ipso to the ether functionality as the main reaction pathway of (.)OH and 2,4-D, followed by homolytic elimination of the ether side chain. In addition, the majority of the early intermediates in the reaction between the hydroxyl radical and 2,4-DCP, the major intermediate, were identified experimentally. While the hydroxyl radical attacks 2,4-D by (.)OH-addition/elimination on the aromatic ring, the oxidative breakdown of 2,4-DCP occurs through (.)OH addition followed by either elimination of chlorine or formation of the ensuing dichlorophenoxyl radical.  相似文献   

4.

The results of studies of the decomposition of 2,4-dichlorophenol (2,4-DCP) in its aqueous solution under the action of atmospheric pressure DBD in an oxygen flow are presented. A new reactor design was used in which the discharge zone was filled with a sorbent (diatomite). It was found that the kinetics of decomposition obeys a first-order kinetic equation for the concentration of 2,4-DCP. The presence of an adsorbent significantly improves the parameters of the decomposition process. Decomposition rates, rate constants and energy efficiency are doubled. So, at a specific discharge power of 1.8 W/cm3 in the presence of a sorbent, the rate constant was ~1 s?1, and without it, ~0.5 s?1. The energy efficiency was 0.031 and 0.016 molecules per 100 eV, respectively. The parameters of the treated solution are improved in terms of its potential toxicity. The concentrations of the main decomposition products (aldehydes, carboxylic acids) in the presence of a sorbent are significantly less than without it. This is due to an increase in the rate of conversion of these products into carbon dioxide molecules. It was also shown that the decomposition of one 2,4-DCP molecule leads to the formation of two chloride ions in solution, and the ozone formed in the discharge does not significantly affect the destruction process.

  相似文献   

5.
In this study, the radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in aqueous solution was studied under various conditions as a function of irradiation dose in the absence and presence of hydrogen peroxide. The obtained data confirmed that largest yield of radiolytic degradation is obtained in oxidation processes/ionizing radiation, where oxidation is carried out with hydroxyl radicals. For complete degradation of 50?ppm 2,4-D, a required dose was lower in the presence of hydrogen peroxide. The formed major toxic phenolic intermediates were 2,4-dichlorophenol (2,4-DCP) and 4-chlorophenol (4-CP). The chemical analysis of the 2,4-D and the intermediates resulted from the radiolytic degradation were performed using a gas chromatography associated to mass spectrometry (GC?CMS) with ion trap dedector (ITD) and ion chromatography (IC). The formation of chlorophenols in addition to chloride, formaldehyde and carboxylic acids was studied as a function of absorbed dose.  相似文献   

6.
We have studied the CdTe quantum dot-induced phototransformation of 2,4-dichlorophenol (2,4-DCP) and its subsequent chemiluminescence (CL) reaction. Quantum dots (QDs) of different size and capped with thioglycolic acid were prepared and characterized by molecular spectroscopy, X-ray diffraction and transmission electron microscopy. In the presence of QDs, 2,4-DCP is photochemically transformed into a long-living light emitting precursor which can react with N-bromosuccinimide to produce CL with peak wavelengths at 475 and 550 nm. The formation of singlet oxygen during the phototransformation process was confirmed by the enhancement effect of deuterium oxide on the CL reaction and the change in the UV spectrum of a chemical trap. The CL intensity is linearly related to the concentration of 2,4-DCP in the range from 0.36 to 36 μmol L?1, and the detection limit (at 3σ) is 0.13 μmol L?1.
Figure
CdTe QDs as an alternative photosensitizer that can be applied to the phototransformation/CL detection of 2, 4-DCP.  相似文献   

7.
The sorption of β-cyclodextrin polymer (β-CDP) and γ-cyclodextrin polymer (γ-CDP) toward 2,4-dichlorophenol (2,4-DCP) in aqueous solutions was investigated. The influence of sorption conditions including initial 2,4-DCP concentration, contact time and pH on sorption capability were discussed. Their sorption behaviors for 2,4-DCP were conducted and it was found the sorption kinetics followed the Ho and McKay equation and the film diffusion was the rate-determined step. The sorption isotherm can be correlated to Freundlich model and the sorption capacity on β-CDP was much larger than that on γ-CDP. The maximum sorption capacity of 2,4-DCP for β-CDP was measured to be 0.16 mmol/g with the initial concentration at 0.67 mmol/L at 288 K. The CDPs were easily recovered by ethanol as washing solvent and they could be used as a kind of recyclable sorbents.  相似文献   

8.
To determine the detailed mechanism of 2-chlorophenol (2-CP) oxidation in supercritical water, both the experiments and theoretical calculations were conducted in this paper. A set of experiments was performed to oxidize 2-CP in supercritical water under temperatures of 380–420 °C, pressure of 25 MPa, residence times of 0–60 s, and H2O2 as oxidant. By determining the molar yields of products, the primary single-ring products were identified as chlorohydroquinone, 2,4-dichlorophenol (2,4-DCP), 2,6-DCP, and 4-CP. The trends for the molar yields of the four products were analyzed at various temperatures and residence times. And built upon the trends, the possible reaction pathways were conjectured. Subsequently, the reaction mechanism was further verified by theoretical calculations, in which density functional theory was adopted as the computational method. The calculated results have well illustrated the experimental results and ascertained the reaction paths we proposed.  相似文献   

9.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

10.
The paper presents the results of studies of a combined process involving the sorption of engine oil on a sorbent (diatomite) followed by regeneration of the sorbent by plasma-oxidative destruction of oil in DBD of atmospheric pressure in oxygen. The process parameters (gas flow rate, sorbent mass, power, treatment time), which provide the possibility of fivefold regeneration of the sorbent and 100% degree of oil decomposition, are revealed. It was found that the kinetics of oil degradation obeys the pseudo-first kinetic order equation with a rate constant of 0.017 s?1. The energy efficiency of the decomposition was 0.169 molecules of oil per 100 eV of input energy. It is shown that treatment of the sorbent for 5 min leads to the complete decomposition of oil. The products of oil decomposition are carboxylic acids, aldehydes and CO2. Complete removal of acids and aldehydes requires the time of about 40 min. The possible participation of ozone in the oxidative degradation of oil is discussed.  相似文献   

11.
Hydrodechlorination (HDC) reaction of chlorophenols was carried out using Pd catalysts supported over zeolite Y, MCM-41 or graphene. Pd-MCM-41 and Pd-Y zeolite were prepared by impregnation and ion-exchange method, respectively. Pd-graphene (Pd-G) was prepared by hydrazine hydrate reduction of palladium ion dispersed on graphene oxide. The catalysts were characterized by several analytical tools such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). These catalysts were subjected to HDC reaction of chlorophenols, such as 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP) and 3,4-dichlorophenol (3,4-DCP). The reaction rate of HDC of chlorophenols catalyzed by Pd catalysts with various solid bases, such as KF/Al2O3 (alumina), sodium acetate (NaOAc) and K2CO3 was compared. First, Pd-MCM-41 and Pd-Y catalysts were compared. 2,4- and 3,4-DCPs were completely decomposed within 6 h, in the case of Pd-MCM-41 with NaOAc. Using Pd-Y instead of Pd-MCM-41 with NaOAc, much faster decomposition was observed. Faster decomposition of 4-CP and DCPs was observed with NaOAc base than K2CO3 or KF/Al2O3 under the same condition. In the case of Pd-Y with KF/Al2O3, slower decomposition of 4-CP and DCPs was observed. These base effects were interpreted using the solubility of NaCl and KCl in alcohol and the basic sites of KF/Al2O3. Because the solubility of NaCl is known to be larger than KCl solubility in alcohol, byproduct NaCl could be easily dissolved and ionized in solvents. For Pd-Y with KF/Al2O3, the small pore size of Y zeolite can interfere with the diffusion of HCl to KF/Al2O3 basic site. Second, three catalysts, including Pd-graphene, were compared. 2,4-DCP was decomposed within 2 h using Pd-G with either K2CO3, NaOAc or KF/Al2O3. Pd-G catalyst showed the highest catalytic activity among Pd-G, Pd-MCM-41 and Pd-Y catalysts. The high activity and stability of the Pd-G could be attributed to the strong metal–support interaction with an electron-deficient site and a critical Pd particle size (ca. 3.5 nm) of Pd-G nanocatalyst with a stronger resistance to the deactivation and good affinity toward aromatic organic molecules, especially phenols. The progress of HDC reaction was monitored by gas chromatography with flame ionization detection (GC/FID), and a feasible degradation process could be explained by analyzing the degradation products such as phenol, cyclohexanone and cyclohexanol from resulting GC chromatograms. The effect of reaction temperature on HDC in Pd-G catalyst was also discussed. In conclusion, Pd-G is an efficient catalyst for decomposition of chlorophenols and can be applied to remediation of chlorophenol-contaminated water under mild conditions.  相似文献   

12.
Sensitized-photocatalytic decomposition of 2,4-dichlorophenol (2,4-DCP) using xan-thene dyes as photosensitizer on TiO2 particles under visible light irradiation was studied. 2,4-DCP can be decomposed efficiently by this method and the decomposition efficiency of 2,4-DCP decreases in the following order: eosin Y ≈ rose bengal > erythrosine B > rhodamine B.  相似文献   

13.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

14.
The thermal degradation of the monomer and polymer of bis(p-toluenesulfonate) of 2,4-hexadiyne-1,6-diol has been investigated. Decomposition during the latter stages of solid-state thermal polymerization at 80°C and of 100% polymer at 112°C was observed by mass spectrometry and the decomposition fragments identified. Mechanisms for this low-temperature degradation are suggested. Pyrolysis of the monomer and polymer between 400 and 1000°C was studied by gas chromatography and mass spectrometry. The principal pyrolysis products are triacetylene and p-toluenesulfonic acid. The fragmentation routes leading to and derived from these products are discussed.  相似文献   

15.
研究了2,4-二氯酚的催化氧化降解.结果表明,CuO/y-Al2O3催化剂表现出较高的活性,且碱土金属氧化物助剂的添加可进一步显著提高2,4-二氯酚氯离子的释放率,其中以SrO的促进作用最强,该催化剂循环使用3次,2,4-二氯酚转化率及氯离子的释放率均维持100%.X射线衍射和NH3程序升温脱附结果表明,催化剂上CuO...  相似文献   

16.
Visible light irradiation combined with homogeneous iron and/or hydrogen peroxide to degrade organic dye rhodamine B (RhB) and small molecular compound 2,4-dichlorophenol (2,4-DCP) in a home-made bottle reactor was assessed. The concen-tration of oxidize species, Fe3+ and Fe2+ were determined during the degradation process. The results demonstrated that visible light irradiation combined with electro-Fenton improved the degradation efficiency. Moreover, both RhB and 2,4-DCP were mineralized during visible light synergistic electro-Fenton oxidation process. 95.0% TOC (total organic carbon) removal rate of RhB occurred after 90 min and 96.7% of COD (chemical oxygen demand) removal rate after 65 min of irradiation. 91.3% TOC removal rate of 2,4-DCP occurred after 16 h of irradiation and 99.9% COD removal rate occurred after 12 h of illumination. The degradation and oxidation process was dominated by the hydroxyl radical ( · OH) generated in the system. Both the impressed electricity and dye sensitization by visible light facilitated the conversion between Fe3+ and Fe 2+ , thus, improving Fenton reaction efficiency.  相似文献   

17.
A newly designed molecularly imprinted polymer (MIP) was synthesized and successfully utilized as a recognition element of an amperometric sensor for 2,4-dichlorophenol (2,4-DCP) detection. The MIP with a well-defined structure could imitate the dehalogenative function of the natural enzyme chloroperoxidase for 2,4-DCP. Imprinted sensor was fabricated in situ on a glassy carbon electrode surface by drop-coating the 2,4-DCP imprinted microgel suspension and chitosan/Nafion mixture. Under optimized conditions, the sensor showed a linear response in the range of 5.0–100 μmol L−1 with a detection limit of 1.6 μmol L−1. Additionally, the imprinted sensor demonstrated higher affinity to target 2,4-DCP over competitive chlorophenolic compounds than non-imprinted sensor. It also exhibited good stability and acceptable repeatability. The proposed sensor could be used for the determination of 2,4-DCP in water samples with the recoveries of 96.2–111.8%, showing a promising potential in practical application.  相似文献   

18.
Photocatalytic degradation of propiconazole, a triazole pesticide, in the presence of titanium dioxide (TiO2) under ultraviolet (UV) illumination was performed in a batch type photocatalytic reactor. A full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters in the photocatalytic degradation of propiconazole in a batch photo-reactor using the TiO2 aqueous suspension. The effects of catalyst concentration (0.15–0.4 gL?1), initial pH (3–9), initial concentration (5–35 mg L?1) and light conditions were optimised at a reaction time duration of 90 min by keeping area/volume ratio constant at 0.919 cm2 mL?1. Photocatalytic oxidation of propiconazole showed 85% degradation and 76.57% mineralisation under UV light (365 nm/30 Wm?2) at pH 6.5, initial concentration 25 mg L?1 and constant temperature (25 ± 1 °C). The Langmuir–Hinshelwood kinetic model has successfully elucidated the effects of the initial concentration on the degradation of propiconazole and the data obtained are consistent with the available kinetic parameters. The photocatalytic transformation products of propiconazole were identified by using gas chromatography–mass spectrometry (GC/MS). The pathway of degradation obtained from mass spectral analysis shows the breakdown of transformation products into smaller hydrocarbons (m/z 28 and 39).  相似文献   

19.

Stability-indicating LC methods were developed and validated for the quantitative determination of doripenem, meropenem and tebipenem in the presence of their degradation products formed during forced degradation studies. Isocratic HPLC and UHPLC separations were performed with a core–shell Kinetex 1.7, 2.6 and 5 µm, all C18, 100A, 100 × 2.1 mm columns and the mobile phase composed of acetonitrile and 12 mmol L−1 ammonium acetate in different ratios. The flow rates of the mobile phase were: 0.5 mL min−1 for 1.7 µm column, and 1.0 mL min−1 for 2.6 and 5 µm ones. Detection wavelength was 298 nm and temperature was set at 30 °C. All analysed drugs were exposed to stress conditions which caused their hydrolysis and thermal degradation. The methods were validated by evaluation of linearity, accuracy, precision, selectivity and robustness. Proposed methods were successfully applied for the determination of investigated antibiotics during kinetic studies in aqueous solutions and in the solid state. The advantages of chromatographic procedures which are based on the use of C18 stationary phases with different particle sizes in the analysis of selected carbapenems were discussed.

  相似文献   

20.
A simple, rapid, isocratic, stability-indicating reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed and validated for the routine analysis of moxonidine in the presence of its degradation products in active pharmaceutical ingredient and pharmaceutical dosage forms. Forced degradation studies were performed according to the guidance of International Conference for Harmonization and were used to evaluate moxonidine intrinsic stability. The drug was subjected to acid, neutral and base hydrolysis as well as to oxidative, thermal and photolytic decomposition in both solution and solid state. The drug appeared to be unstable towards acid and base hydrolysis. To achieve desirable conditions for UPLC analysis, the method development was done with the assistance of experimental design and multivariate optimization methodology by means of Derringer’s desirability function. Stress samples were analyzed according to the experimental plan for fractional factorial screening design and Box-Behnken optimization design. The chromatographic separation was achieved on a C18 Hypersil Gold aq. column (100 mm × 2.1 mm, 1.9 μm) with the mobile phase consisting of methanol–ammonium acetate buffer (10 mM, pH 3.43) mixture (0.9:99.1, v/v) pumped at a flow rate of 870 μL min?1 and detection wavelength of 255 nm. The UPLC–MS and UPLC–MS/MS analyses were further used to characterize the found degradation products. The validation of the proposed method was also performed considering selectivity, linearity, accuracy, precision, limit of detection and limit of quantification, and the results indicated that the method fulfilled all required criteria. The method was successfully applied to the analysis of commercial tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号