首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
To investigate the mechanisms underlying the depressed sarcolemmal (SL) Na(+)-K(+)-ATPase activity in congestive heart failure (CHF), different isoforms and gene expression of Na(+)-K(+)-ATPase were examined in the failing left ventricle (LV) at 8 weeks after myocardial infarction (MI). In view of the increased activity of renin-angiotensin system (RAS) in CHF, these parameters were also studied after 5 weeks of treatment with enalapril (10 mg x kg-1 x day-1), an angiotensin-converting enzyme inhibitor, and losartan (20 mg.kg-1.day-1), an angiotensin II type 1 receptor antagonist, starting at 3 weeks after the coronary ligation in rats. The infarcted animals showed LV dysfunction and depressed SL Na(+)-K(+)-ATPase activity. Protein content and mRNA levels for Na(+)-K(+)-ATPase alpha2 isoform were decreased whereas those for Na(+)-K(+)-ATPase alpha3 isoform were increased in the failing LV. On the other hand, no significant changes were observed in protein content or mRNA levels for Na(+)-K(+)-ATPase alpha1 and beta1 isoforms. The treatment of infarcted animals with enalapril or losartan improved LV function and attenuated the depression in Na(+)-K(+)-ATPase alpha2 isoform as well as the increase in alpha3 isoform, at both the protein and mRNA levels; however, combination therapy with enalapril and losartan did not produce any additive effects. These results provide further evidence that CHF due to MI is associated with remodeling of SL membrane and suggest that the blockade of RAS plays an important role in preventing these alterations in the failing heart.  相似文献   

2.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

3.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

4.
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.  相似文献   

5.
Phospholemman (PLM), when phosphorylated at serine 68, relieves its inhibition on Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger 1 (NCX1) in cardiac myocytes. Under stress when catecholamine levels are high, enhanced Na(+)-K(+)-ATPase activity by phosphorylated PLM attenuates intracellular Na(+) concentration ([Na(+)](i)) overload. To evaluate the effects of PLM on NCX1 on in vivo cardiac contractility, we injected recombinant adeno-associated virus (serotype 9) expressing either the phosphomimetic PLM S68E mutant or green fluorescent protein (GFP) directly into left ventricles (LVs) of PLM-knockout (KO) mice. Five weeks after virus injection, ~40% of isolated LV myocytes exhibited GFP fluorescence. Expression of S68E mutant was confirmed with PLM antibody. There were no differences in protein levels of α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase, NCX1, and sarco(endo)plasmic reticulum Ca(2+)-ATPase between KO-GFP and KO-S68E LV homogenates. Compared with KO-GFP myocytes, Na(+)/Ca(2+) exchange current was suppressed, but resting [Na(+)](i), Na(+)-K(+)-ATPase current, and action potential amplitudes were similar in KO-S68E myocytes. Resting membrane potential was slightly lower and action potential duration at 90% repolarization (APD(90)) was shortened in KO-S68E myocytes. Isoproterenol (Iso; 1 μM) increased APD(90) in both groups of myocytes. After Iso, [Na(+)](i) increased monotonically in paced (2 Hz) KO-GFP but reached a plateau in KO-S68E myocytes. Both systolic and diastolic [Ca(2+)](i) were higher in Iso-stimulated KO-S68E myocytes paced at 2 Hz. Echocardiography demonstrated similar resting heart rate, ejection fraction, and LV mass between KO-GFP and KO-S68E mice. In vivo closed-chest catheterization demonstrated enhanced contractility in KO-S68E compared with KO-GFP hearts stimulated with Iso. We conclude that under catecholamine stress when [Na(+)](i) is high, PLM minimizes [Na(+)](i) overload by relieving its inhibition of Na(+)-K(+)-ATPase and preserves inotropy by simultaneously inhibiting Na(+)/Ca(2+) exchanger.  相似文献   

6.
Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ~50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.  相似文献   

7.
Although it is generally accepted that the efficacy of imidapril, an angiotensin-converting enzyme inhibitor, in congestive heart failure (CHF) is due to improvement of hemodynamic parameters, the significance of its effect on gene expression for sarcolemma (SL) and sarcoplasmic reticulum (SR) proteins has not been fully understood. In this study, we examined the effects of long-term treatment of imidapril on mortality, cardiac function, and gene expression for SL Na+/K+ ATPase and Na+ -Ca2+ exchanger as well as SR Ca2+ pump ATPase, Ca2+ release channel (ryanodine receptor), phospholamban, and calsequestrin in CHF due to myocardial infarction. Heart failure subsequent to myocardial infarction was induced by occluding the left coronary artery in rats, and treatment with imidapril (1 mg.kg(-1).day(-1)) was started orally at the end of 3 weeks after surgery and continued for 37 weeks. The animals were assessed hemodynamically and the heart and lung were examined morphologically. Some hearts were immediately frozen at -70 degrees C for the isolation of RNA as well as SL and SR membranes. The mortality of imidapril-treated animals due to heart failure was 31% whereas that of the untreated heart failure group was 64%. Imidapril treatment improved cardiac performance, attenuated cardiac remodeling, and reduced morphological changes in the heart and lung. The depressed SL Na+/K+ ATPase and increased SL Na+-Ca2+ exchange activities as well as reduced SR Ca2+ pump and SR Ca2+ release activities in the failing hearts were partially prevented by imidapril. Although changes in gene expression for SL Na+/K+ ATPase isoforms as well as Na+-Ca2+ exchanger and SR phospholamban were attenuated by treatments with imidapril, no alterations in mRNA levels for SR Ca2+ pump proteins and Ca2+ release channels were seen in the untreated or treated rats with heart failure. These results suggest that the beneficial effects of imidapril in CHF may be due to improvements in cardiac performance and changes in SL gene expression.  相似文献   

8.
9.
Phospholemman (PLM) regulates contractility and Ca(2+) homeostasis in cardiac myocytes. We characterized excitation-contraction coupling in myocytes isolated from PLM-deficient mice backbred to a pure congenic C57BL/6 background. Cell length, cell width, and whole cell capacitance were not different between wild-type and PLM-null myocytes. Compared with wild-type myocytes, Western blots indicated total absence of PLM but no changes in Na(+)/Ca(2+) exchanger, sarcoplasmic reticulum (SR) Ca(2+)-ATPase, alpha(1)-subunit of Na(+)-K(+)-ATPase, and calsequestrin levels in PLM-null myocytes. At 5 mM extracellular Ca(2+) concentration ([Ca(2+)](o)), contraction and cytosolic [Ca(2+)] ([Ca(2+)](i)) transient amplitudes and SR Ca(2+) contents in PLM-null myocytes were significantly (P < 0.0004) higher than wild-type myocytes, whereas the converse was true at 0.6 mM [Ca(2+)](o). This pattern of contractile and [Ca(2+)](i) transient abnormalities in PLM-null myocytes mimics that observed in adult rat myocytes overexpressing the cardiac Na(+)/Ca(2+) exchanger. Indeed, we have previously reported that Na(+)/Ca(2+) exchange currents were higher in PLM-null myocytes. Activation of protein kinase A resulted in increased inotropy such that there were no longer any contractility differences between the stimulated wild-type and PLM-null myocytes. Protein kinase C stimulation resulted in decreased contractility in both wild-type and PLM-null myocytes. Resting membrane potential and action potential amplitudes were similar, but action potential duration was much prolonged (P < 0.04) in PLM-null myocytes. Whole cell Ca(2+) current densities were similar between wild-type and PLM-null myocytes, as were the fast- and slow-inactivation time constants. We conclude that a major function of PLM is regulation of cardiac contractility and Ca(2+) fluxes, likely by modulating Na(+)/Ca(2+) exchange activity.  相似文献   

10.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

11.
12.
Phospholipase D 2 (PLD2) is the major PLD isozyme associated with the cardiac sarcolemmal (SL) membrane. Hydrolysis of SL phosphatidylcholine (PC) by PLD2 produces phosphatidic acid (PA), which is then converted to 1,2 diacylglycerol (DAG) by the action of phosphatidate phosphohydrolase type 2 (PAP2). In view of the role of both PA and DAG in the regulation of Ca(2+) movements and the association of abnormal Ca(2+) homeostasis with congestive heart failure (CHF), we examined the status of both PLD2 and PAP2 in SL membranes in the infarcted heart upon occluding the left coronary artery in rats for 1, 2, 4, 8 and 16 weeks. A time-dependent increase in both SL PLD2 and PAP2 activities was observed in the non-infarcted left ventricular tissue following myocardial infarction (MI); however, the increase in PAP2 activity was greater than that in PLD2 activity. Furthermore, the contents of both PA and PC were reduced, whereas that of DAG was increased in the failing heart SL membrane. Treatment of the CHF animals with imidapril, an angiotensin-converting enzyme (ACE) inhibitor, attenuated the observed changes in heart function, SL PLD2 and PAP2 activities, as well as SL PA, PC and DAG contents. The results suggest that heart failure is associated with increased activities of both PLD2 and PAP2 in the SL membrane and the beneficial effect of imidapril on heart function may be due to its ability to prevent these changes in the phospholipid signaling molecules in the cardiac SL membrane.  相似文献   

13.
Disturbance in ionic gradient across sarcolemma may lead to arrhythmias. Because Na(+)-K(+)-ATPase regulates intracellular Na(+) and K(+) concentrations, and therefore intracellular Ca(2+) concentration homeostasis, our aim was to determine whether changes in the Na(+)-K(+)-ATPase alpha-isoforms in guinea pigs during transition from compensated (CLVH) to decompensated left ventricular hypertrophy (DLVH) were concomitant with arrhythmias. After 12- and 20-mo aortic stenosis, CLVH and DLVH were characterized by increased mean arterial pressure (30% and 52.7%, respectively). DLVH differed from CLVH by significantly increased end-diastolic pressure (34%), decreased sarco(endo)plasmic reticulum Ca(2+)-ATPase (-75%), and increased Na(+)/Ca(2+) exchanger (25%) mRNA levels and by the occurrence of ventricular arrhythmias. The alpha-isoform (mRNA and protein levels) was significantly lower in DLVH (2.2 +/- 0.2- and 1. 4 +/- 0.15-fold, respectively, vs. control) than in CLVH (3.5 +/- 0. 4- and 2.2 +/- 0.13-fold, respectively) and was present in sarcolemma and T tubules. Changes in the levels of alpha(1)- and alpha(3)-isoform in CLVH and DLVH appear physiologically irrelevant. We suggest that the increased level of alpha(2)-isoform in CLVH may participate in compensation, whereas its relative decrease in DLVH may enhance decompensation and arrhythmias.  相似文献   

14.
Rapid and precise control of Na(+)/Ca(2+) exchanger (NCX1) activity is essential in the maintenance of beat-to-beat Ca(2+) homeostasis in cardiac myocytes. Here, we show that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, is a novel endogenous protein inhibitor of cardiac NCX1. Using a heterologous expression system that is devoid of both endogenous PLM and NCX1, we first demonstrated by confocal immunofluorescence studies that both exogenous PLM and NCX1 co-localized at the plasma membrane. Reciprocal co-immunoprecipitation studies revealed specific protein-protein interaction between PLM and NCX1. The functional consequences of direct association of PLM with NCX1 was the inhibition of NCX1 activity, as demonstrated by whole-cell patch clamp studies to measure NCX1 current density and radiotracer flux assays to assess Na(+)-dependent (45)Ca(2+) uptake. Inhibition of NCX1 by PLM was specific, because a single mutation of serine 68 to alanine in PLM resulted in a complete loss of inhibition of NCX1 current, although association of the PLM mutant with NCX1 was unaltered. In native adult cardiac myocytes, PLM co-immunoprecipitated with NCX1. We conclude that PLM, a member of the FXYD family of small ion transport regulators known to modulate Na(+)-K(+)-ATPase, also regulates Na(+)/Ca(2+) exchange in the heart.  相似文献   

15.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   

16.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

17.
To gain more insight into the mechanistic processes controlling the kinetics of inotropic response of digoxin in the perfused whole heart, an integrated kinetic model was developed incorporating digoxin uptake, receptor binding (Na(+)-K(+)-ATPase inhibition), and cellular events linking receptor occupation and response. The model was applied to data obtained in the single-pass Langendorff-perfused rat heart for external [Ca(2+)] of 0.5 and 1.5 mM under control conditions and in the presence of the reverse-mode Na(+)/Ca(2+) exchange inhibitor KB-R7943 (0.1 microM) in perfusate. Outflow concentration and left ventricular developed pressure data measured for three consecutive doses (15, 30, and 45 microg) in each heart were analyzed simultaneously. While disposition kinetics of digoxin was determined by interaction with a heterogeneous receptor population consisting of a high-affinity/low-capacity and a low-affinity/high- capacity binding site, response generation was >80% mediated by binding to the high-affinity receptor. Digoxin sensitivity increased at lower external [Ca(2+)] due to higher stimulus amplification. Coadministration of KB-R7943 significantly reduced the positive inotropic effect of digoxin at higher doses (30 and 45 microg) and led to a saturated and delayed receptor occupancy-response relationship in the cellular effectuation model. The results provide further evidence for the functional heterogeneity of the Na(+)-K(+)-ATPase and suggest that in the presence of KB-R7943 a reduction of the Ca(2+) influx rate via the reverse mode Na(+)/Ca(2+) exchanger might become the limiting factor in digoxin response generation.  相似文献   

18.
Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L-type Ca(2+) channels predicted in the simulation was demonstrated in experiments, where blocking Ca(2+) channels resulted in a much delayed cell swelling.  相似文献   

19.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) is a polytopic membrane protein that uses both the inward Na(+) gradient and the outward K(+) gradient to drive Ca(2+) extrusion across the plasma membrane. NCKX1 is found in retinal rod photoreceptors, while NCKX2 is found in retinal cone photoreceptors and is also widely expressed in the brain. Here, we have identified a single residue (out of >100 tested) for which substitution removed the K(+) dependence of NCKX-mediated Ca(2+) transport. Charge-removing replacement of Asp(575) by either asparagine or cysteine rendered the mutant NCKX2 proteins independent of K(+), whereas the charge-conservative substitution of Asp(575) to glutamate resulted in a nonfunctional mutant NCKX2 protein, accentuating the critical nature of this residue. Asp(575) is conserved in the NCKX1-5 genes, while an asparagine is found in this position in the three NCX genes, coding for the K(+)-independent Na(+)/Ca(2+) exchanger.  相似文献   

20.
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号