首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.  相似文献   

2.
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, migration, and ERK activation on collagen IV and the integrins involved. Both dominant-negative Src and Src inhibitor PP2 strongly inhibited collagen IV ERK activation in Caco-2 intestinal epithelial cells. Collagen IV stimulated Grb2 binding site FAK Y925 phosphorylation, which was inhibited by PP2 and required FAK Y397 autophosphorylation. Additionally, FAK Y925F expression blocked collagen IV ERK activation. alpha(1)beta(1)- Or alpha(2)beta(1)-integrin blockade with alpha(1)- or alpha(2)-integrin subunit antibodies indicated that either integrin can mediate adhesion, cell spreading, and FAK, Src, and ERK activation on collagen IV. Both dominant-negative Src and PP2 inhibited Caco-2 spreading on collagen IV. PP2 inhibited p130(Cas) tyrosine phosphorylation, but dominant-negative p130(Cas) did not inhibit cell spreading. PP2 inhibited Caco-2 migration on collagen IV much more strongly than the mitogen-activated protein kinase kinase inhibitor PD-98059, which completely inhibited collagen IV ERK activation. These results suggest a pathway for collagen IV ERK activation requiring Src phosphorylation of FAK Y925 not previously described for this matrix protein and suggest either alpha(1)beta(1)- or alpha(2)beta(1)-integrins can regulate Caco-2 spreading and ERK activation on collagen IV via Src. Additionally, these results suggest Src regulates Caco-2 migration on collagen IV primarily through ERK-independent pathways.  相似文献   

3.
We have expressed the beta1B integrin subunit in beta1-deficient GD25 cells to examine beta1B functions without the interference of endogenous beta1A expression. As previously reported [Retta et al., 1998, Mol. Biol. Cell 9, 715-731], the beta1B integrins did not mediate cell adhesion under normal culture conditions, while the presence of 0.3 mM Mn(2+) allowed beta1B integrins to support adhesion. Mn(2+), as well as the small soluble peptide GRGDS, induced a beta1B conformation, which was recognized by the mAb 9EG7, a marker for active or ligand-bound integrins. beta1B integrins were found to localize to a subset of focal contacts in a ligand-independent manner on fibronectin, but not on vitronectin. However, clustering of beta1B did not induce tyrosine phosphorylation of FAK, p130(Cas), or paxillin, as studied by beta1B-mediated adhesion, to fibronectin in the presence of Mn(2+) or to anti-beta1 antibody in DMEM. Induction of ligand-occupied conformation by the GRGDS peptide during the adhesion to anti-beta1 antibody also failed to trigger FAK phosphorylation. Stimulation of tyrosine phosphorylation on FAK, p130(Cas), and paxillin by adhesion via integrin alphaVbeta3 to fibronectin or vitronectin was not disturbed in GD25-beta1B cells compared to the untransfected GD25 cells, nor were any negative effects of beta1B observed on alphaVbeta3-mediated cell attachment, spreading, and actin organization, or on the cell proliferation rate. These results show that the reported negative effects of beta1B on adhesive events do not apply to alphaVbeta3-dependent interactions and suggest that they may specifically act on beta1 integrins.  相似文献   

4.
We have previously shown that mutation of the two tyrosines in the cytoplasmic domain of integrin subunit beta1 (Y783 and Y795) to phenylalanines markedly reduces the capability of beta1A integrins to mediate directed cell migration. In this study, beta1-dependent cell spreading was found to be delayed in GD25 cells expressing beta1A(Y783/795F) compared to that in wild-type GD25-beta1A. Focal adhesion kinase (FAK) tyrosine phosphorylation and activation were severely impaired in response to beta1-dependent adhesion in GD25-beta1A(Y783/795F) cells compared to that in wild-type GD25-beta1A or mutants in which only a single tyrosine was altered (beta1A(Y783F) or beta1A(Y795F)). Phosphorylation site-specific antibodies selective for FAK phosphotyrosine 397 indicated that the defect in FAK phosphorylation via beta1A(Y783/795F) lies at the level of the initial autophosphorylation step. Indeed, beta1A-dependent tyrosine phosphorylation of tensin and paxillin was lost in the beta1A(Y783/795F) cells, consistent with the impairment in FAK activation. In contrast, p130(CAS) overall tyrosine phosphorylation was unaffected by the beta1 mutations. Despite the defect in beta1-mediated FAK activation, FAK was still localized to focal adhesions. Taken together, the phenotype of the GD25-beta1A(Y783/795F) cells resembles, but is distinct from, the phenotype observed in FAK-null cells. These observations argue that tyrosines 783 and 795 within the cytoplasmic tail of integrin subunit beta1A are critical mediators of FAK activation and cell spreading in GD25 cells.  相似文献   

5.
Ohmori T  Yatomi Y  Inoue K  Satoh K  Ozaki Y 《Biochemistry》2000,39(19):5797-5807
The newly described adapter molecule p130 Crk-associated substrate (Cas) has been reported to contribute to cytoskeletal organization through assembly of actin filaments and to be pivotal in embryonic development and in oncogene-mediated transformation. We characterized the regulation of Cas tyrosine phosphorylation in highly differentiated, anucleate platelets. Phospholipase C-activating receptor agonists, including collagen, thrombin receptor-activating peptide (TRAP), and U46619 (a thromboxane A2 analogue), and A23187 (a Ca2+ ionophore) induced rapid Cas tyrosine phosphorylation in platelets. 12-O-Tetradecanoylphorbol 13-acetate and 1-oleoyl-2-acetyl-sn-glycerol, protein kinase C (PKC) activators, also induced Cas tyrosine phosphorylation, albeit sluggishly. Cas tyrosine phosphorylation induced by collagen or TRAP was transient in aggregating platelets; Cas became dephosphorylated in a manner dependent on integrin alpha IIb beta 3-mediated aggregation. While BAPTA-AM (an intracellular Ca2+ chelator) inhibited Cas phosphorylation induced by collagen or TRAP, Ro31-8220 (a PKC inhibitor) rather prolonged it. Under the conditions, this PKC inhibitor suppressed platelet aggregation but not intracellular Ca2+ mobilization. In contrast to Cas involvement in focal adhesions in other cells, platelet Cas phosphorylation preceded the activation of focal adhesion kinase (FAK), and blockage of alpha IIb beta 3-mediated platelet aggregation with a GRGDS peptide resulted in prolongation of stimulation-dependent Cas tyrosine phosphorylation but in suppression of FAK tyrosine phosphorylation. Furthermore, TRAP-induced Cas phosphorylation was insensitive to cytochalasin D, an actin polymerization inhibitor. The failure of FAK to associate with Cas in immunoprecipitation studies also suggests that Cas tyrosine phosphorylation is independent of FAK activation. Of the signaling molecules investigated in this study, Src seemed to associate with Cas. Finally, Cas existed mainly in cytosol and membrane cytoskeleton fractions in the resting state, and remained unchanged during platelet aggregation, when FAK translocated to the cytoskeletal fraction. Our findings on platelet Cas suggest that (i) rapid Cas tyrosine phosphorylation occurs following phosphoinositide turnover by receptor-mediated agonists and may be mediated by intracellular Ca2+ mobilization; (ii) PKC activation, by itself, may elicit sluggish Cas phosphorylation; (iii) Cas tyrosine dephosphorylation, but not phosphorylation, is dependent on integrin alpha IIb beta 3-mediated aggregation; and (iv) Cas is not involved in cytoskeletal reorganization. Anucleate platelets seem to provide a unique model system to fully elucidate the functional role(s) of Cas.  相似文献   

6.
We previously reported that mouse orthologue of puromycin insensitive leucyl-specific aminopeptidase (mPILSAP) played an important role in angiogenesis by regulating the proliferation and migration of endothelial cells (ECs) (Miyashita et al., 2002. Blood 99:3241-3249). Here, we examined the mechanism as to how mPILSAP regulates the migration of ECs. Cell adhesion through integrins plays a crucial role in cell migration, and ECs use at least type-1 collagen receptor integrin alpha2beta1, fibronectin receptor alpha5beta1, and vitronectin receptors alphavbeta3 and alphavbeta5. mPILSAP antisense oligodeoxynucleotide (AS-ODN) or leucinethiol (LT), a leucyl-aminopeptidase inhibitor, did not affect the attachment but did significantly inhibit the spreading of cells of the murine endothelial cell line MSS31 when they were plated on vitronectin-, fibronectin-, or type-1 collagen, although they did not affect the expression of integrin alpha2, alpha5, alphav, beta1, beta3, and beta5 subunits on the cell surface. AS-ODN and LT also inhibited the tyrosine phosphorylation of FAK when cells were plated on vitronectin, fibronectin, or type-1 collagen. This inhibition of cell spreading and of tyrosine phosphorylation of FAK could be negated by Mg(2+). These results suggest that mPILSAP is involved in the activation of endothelial integrins.  相似文献   

7.
We previously observed that collagen IV regulates Caco-2 intestinal epithelial cell spreading and migration via Src-dependent p130(Cas) phosphorylation and stimulates focal adhesion kinase (FAK). However, the role of FAK and the related kinase, Pyk2, in Caco-2 spreading and migration is unclear. FAK- or Pyk2-specific siRNAs reduced protein levels by 90%. However, when detached cells were replated on collagen IV neither individual nor combined FAK and Pyk2 siRNAs affected the cell spreading rate. As combined FAK and Pyk2 siRNAs increased p130(Cas) protein levels, we cotransfected cells with 1 nm p130(Cas) siRNA to partially reduce p130(Cas) protein to control levels. Although p130(Cas) Tyr(P)(249) phosphorylation was reduced by 60%, cell spreading was unaffected. Combined siRNA reduction of FAK, Pyk2 and p130(Cas) increased cell spreading by 20% compared to p130(Cas) siRNA alone, suggesting that FAK and Pyk2 negatively regulate spreading in addition to stimulating spreading via p130(Cas). FAK-binding mutant SH3 domain-deleted rat p130(Cas) was not phosphorylated after adhesion and, unlike full-length p130(Cas), did not restore spreading after human-specific p130(Cas) siRNA knockdown of endogenous p130(Cas). Together, these data suggest that FAK positively regulates Caco-2 spreading on collagen IV via p130(Cas) phosphorylation, but also suggests that FAK may negatively regulate spreading through other mechanisms and the presence of additional FAK-independent pathways regulating p130(Cas).  相似文献   

8.
We have recently demonstrated that in breast carcinoma MCF7 cells MT1-MMP processes the alphav, alpha3, and alpha5 integrin precursors generating the respective mature S-S-linked heavy and light alpha-chains. The precursor of alpha2 integrin subunit was found resistant to MT1-MMP proteolysis. The processing of the alphav subunit by MT1-MMP facilitated alphavbeta3-dependent adhesion, activation of FAK signaling pathway, and migration of MCF7 cells on vitronectin. To elucidate further the effects of MT1-MMP on cellular integrins, we examined the functional activity of alpha5beta1 and alpha2beta1 integrins in MCF7 cells expressing MT1-MMP. Either expression of MT1-MMP alone or its coexpression with alphavbeta3 failed to affect the functionality of alpha5beta1 integrin, and adhesion of cells to fibronectin. MT1-MMP, however, profoundly affected the cross-talk involving alphavbeta3 and alpha2beta1 integrins. In MT1-MMP-deficient cells, integrin alphavbeta3 suppressed the functional activity of the collagen-binding alpha2beta1 integrin receptor and diminished cell adhesion to type I collagen. Coexpression of MT1-MMP with integrin alphavbeta3 restored the functionality of alpha2beta1 integrin and, consequently, the ability of MCF7 cells to adhere efficiently to collagen. We conclude that the MT1-MMP-controlled cross-talk between alphavbeta3 and alpha2beta1 integrins supports binding of aggressive, MT1-MMP-, and alphavbeta3 integrin-expressing malignant cells on type I collagen, the most common substratum of the extracellular matrix.  相似文献   

9.
Mass spectrometry analysis of immunoprecipitates from serum-treated GD3-expressing melanoma cells with PY20 (anti-phosphotyrosine antibody) revealed that focal adhesion kinase (FAK) is more strongly activated in GD3-expressing cells than in GD3-negative cells. Involvement of FAK in the increased proliferation and invasion in GD3-expressing melanomas was demonstrated by siRNA-mediated knockdown. Also, it was shown that FAK is located up-stream of p130Cas and paxillin in the enhanced signaling pathway. GD3 expression enhanced the association of FAK with p130Cas after treatment with fetal calf serum. Thus, focal adhesion kinase as well as p130Cas and paxillin should be a crucial molecule undergoing stronger tyrosine phosphorylation in GD3-expressing melanoma cells. Molecules linking GD3 and FAK such as integrins in the enhanced signaling pathway remain to be investigated.  相似文献   

10.
The alpha2beta1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Here we describe the isolation of a novel metalloproteinase/disintegrin, which is a potent inhibitor of the collagen binding to alpha2beta1 integrin. This 55-kDa protein (alternagin) and its disintegrin domain (alternagin-C) were isolated from Bothrops alternatus snake venom. Amino acid sequencing of alternagin-C revealed the disintegrin structure. Alternagin and alternagin-C inhibit collagen I-mediated adhesion of K562-alpha2beta1-transfected cells. The IC50 was 134 and 100 nM for alternagin and alternagin-C, respectively. Neither protein interfered with the adhesion of cells expressing alphaIIbeta3, alpha1beta1, alpha5beta1, alpha4beta1 alphavbeta3, and alpha9beta1 integrins to other ligands such as fibrinogen, fibronectin, and collagen IV. Alternagin and alternagin-C also mediated the adhesion of the K562-alpha2beta1-transfected cells. Our results show that the disintegrin-like domain of alternagin is responsible for its ability to inhibit collagen binding to alpha2beta1 integrin.  相似文献   

11.
Collagen fibers or a glycoprotein VI-specific collagen-related peptide (CRP-XL) stimulated tyrosine phosphorylation of the focal adhesion kinase, p125(fak) (FAK), in human platelets. An integrin alpha(2)beta(1)-specific triple-helical peptide ligand, containing the sequence GFOGER (single-letter nomenclature, O = Hyp) was without effect. Antibodies to the alpha(2) and beta(1) integrin subunits did not inhibit platelet FAK tyrosine phosphorylation caused by either collagen fibers or CRP-XL. Tyrosine phosphorylation of FAK caused by CRP-XL or thrombin, but not that caused by collagen fibers, was partially inhibited by GR144053F, an antagonist of integrin alpha(IIb)beta(3). The intracellular Ca(2+) chelator, BAPTA, and the protein kinase C inhibitor, Ro31-8220, were each highly effective inhibitors of the FAK tyrosine phosphorylation caused by collagen or CRP-XL. These data suggest that, in human platelets, 1) occupation or clustering of the integrin alpha(2)beta(1) is neither sufficient nor necessary for activation of FAK, 2) the fibrinogen receptor alpha(IIb)beta(3) is not required for activation of FAK by collagen fibers, and 3) both intracellular Ca(2+) and protein kinase C activity are essential intermediaries of FAK activation.  相似文献   

12.
Integrin activation and focal complex formation in cardiac hypertrophy   总被引:12,自引:0,他引:12  
Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.  相似文献   

13.
Pro-apoptotic signaling pathway activated by echistatin in GD25 cells   总被引:1,自引:0,他引:1  
Disintegrins, low molecular weight RGD-containing polypeptides isolated from snake venoms, have seen use as integrin antagonists in the field of tumor biology and angiogenesis. In this study, we investigated the molecular mechanism by which the disintegrin echistatin affects cell adhesion and signaling resulting in an apoptotic response in the GD25 cell system. Wild-type GD25 cells, which lack expression of the beta(1) family of integrin, and stable transfectants expressing the A isoform of beta(1) integrin subunit were used. Nanomolar concentrations of echistatin detached fibronectin- and vitronectin-adherent GD25 cells from immobilized substratum. However, prior to inducing detachment of adherent cells, echistatin caused apoptosis as measured by caspase-3 activation. Either cell detachment or apoptotic response induced by echistatin were more pronounced on fibronectin-adherent GD25 cells than on vitronectin-adherent ones. GD25 cell exposure to echistatin caused a reduction of tyrosine phosphorylation levels of pp125(FAK), whereas it didn't affect either Shc tyrosine phosphorylation levels or Shc-Grb2 functional association. The down-regulation of pp125(FAK) preceded apoptosis and cell detachment induced by echistatin. Our results indicate that pp125(FAK) and not Shc pathway is involved in echistatin-induced apoptotic response in the GD25 cell system.  相似文献   

14.
15.
Ganglioside GD3 is widely expressed in human malignant melanoma cell lines and tumors. Previously, we reported that GD3+ cells show stronger tyrosine phosphorylation of focal adhesion kinase (FAK), p130Cas, and paxillin when treated with fetal calf serum than GD3− cells. In this study, we analyzed the changes in the signals mediated by the interaction between integrins and extracellular matrices (ECM) to clarify how GD3 enhances cell signals in the vicinity of the cell membrane. An adhesion assay with a real time cell electronic sensing system revealed that GD3+ cells had stronger adhesion to all extracellular matrices examined. In particular, GD3+ cells attached more strongly to collagen type I and type IV than controls. Correspondingly, they showed stronger tyrosine phosphorylation of FAK and paxillin during adhesion to collagen type I. In the floating pattern of detergent extracts, a high level of integrin β1 was found in glycolipid-enriched microdomain (GEM)/rafts in GD3+ cells before adhesion, whereas a smaller amount of integrin β1 was detected in the GEM/rafts of controls. Some phosphorylated forms of FAK as well as total FAK were found in GEM/rafts during cell adhesion only in GD3+ cells. Another signal consisting of integrin-linked kinase/Akt was also activated during adhesion more strongly in GD3+ cells than in controls. In double stained GD3+ cells, GD3 and integrin β1 co-localized at the focal adhesion with a punctate pattern. All these results suggested that integrins assembled and formed a cluster in GEM/rafts, leading to the enhanced signaling and malignant properties under GD3 expression.  相似文献   

16.
The streptococcal collagen-like proteins Scl1 and Scl2 are prokaryotic members of a large protein family with domains containing the repeating amino acid sequence (Gly-Xaa-Yaa)(n) that form a collagen-like triple-helical structure. Here, we test the hypothesis that Scl variant might interact with mammalian collagen-binding integrins. We show that the recombinant Scl protein p176 promotes adhesion and spreading of human lung fibroblast cells through an alpha2beta1 integrin-mediated interaction as shown in cell adhesion inhibition assays using anti-alpha2beta1 and anti-beta1 integrins monoclonal antibodies. Accordingly, C2C12 cells stably expressing alpha2beta1 integrin as the only collagen-binding integrin show productive cell adhesion activities on p176 that can be blocked by an anti-alpha2beta1 integrin antibody. In addition, p176 promotes tyrosine phosphorylation of p125(FAK) of C2C12 cells expressing alpha2beta1 integrin, whereas parental cells do not. Furthermore, C2C12 adhesion of human lung fibroblast cells to p176 induces phosphorylation of p125FAK, p130CAS, and p68Paxillin proteins. In a domain swapping experiment, we show that integrin binds to the collagenous domain of the Scl protein. Moreover, the recombinant inserted domain of the alpha2 integrin interacts with p176 with a relatively high affinity (K(D) = 17 nm). Attempts to identify the integrin sites in p176 suggest that more than one site may be involved. These studies, for the first time, suggest that the collagen-like proteins of prokaryotes retained not only structural but also functional characteristics of their eukaryotic counterparts.  相似文献   

17.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

18.
The fibronectin binding integrins alpha5beta1 and alpha4beta1 generate signals pivotal for cell migration through distinct yet undefined mechanisms. For alpha5beta1, beta1-mediated activation of focal adhesion kinase (FAK) promotes c-Src recruitment to FAK and the formation of a FAK-Src signaling complex. Herein, we show that FAK expression is essential for alpha5beta1-stimulated cell motility and that exogenous expression of human alpha4 in FAK-null fibroblasts forms a functional alpha4beta1 receptor that promotes robust cell motility equal to the alpha5beta1 stimulation of wild-type and FAK-reconstituted fibroblasts. alpha4beta1-stimulated FAK-null cell spreading and motility were dependent on the integrity of the alpha4 cytoplasmic domain, independent of direct paxillin binding to alpha4, and were not affected by PRNK expression, a dominant-negative inhibitor of Pyk2. alpha4 cytoplasmic domain-initiated signaling led to a approximately 4-fold activation of c-Src which did not require paxillin binding to alpha4. Notably, alpha4-stimulated cell motility was inhibited by catalytically inactive receptor protein-tyrosine phosphatase alpha overexpression and blocked by the p50Csk phosphorylation of c-Src at Tyr-529. alpha4beta1-stimulated cell motility of triple-null Src(-/-), c-Yes(-/-), and Fyn(-/-) fibroblasts was dependent on c-Src reexpression that resulted in p130Cas tyrosine phosphorylation and Rac GTPase loading. As p130Cas phosphorylation and Rac activation are common downstream targets for alpha5beta1-stimulated FAK activation, our results support the existence of a novel alpha4 cytoplasmic domain connection leading to c-Src activation which functions as a FAK-independent linkage to a common motility-promoting signaling pathway.  相似文献   

19.
The beta(1) integrin, functioning as a mechanoreceptor, senses a mechanical stimulus generated during collagen matrix contraction and down-regulates the phosphatidylinositol 3-kinase (PI3K)/Akt survival signal triggering apoptosis. The identities of integrin-associated signal molecules in the focal adhesion complex that are responsible for propagating beta(1) integrin viability signals in response to collagen matrix contraction are not known. Here we show that in response to collagen contraction focal adhesion kinase (FAK) is dephosphorylated. In contrast, enforced activation of beta(1) integrin by anti-beta(1) integrin antibody, which protects fibroblasts from apoptosis, preserves FAK phosphorylation. We demonstrate that ligation of beta(1) integrin by type I collagen or by enforced activation of beta(1) integrin by antibody promotes phosphorylation of FAK, p85 subunit of PI3K, and serine 473 of Akt. Wortmannin inhibited Akt but not FAK phosphorylation in response to enforced activation of beta(1) integrin by antibody. Blocking FAK by pharmacologic inhibition or by dominant negative FAK attenuated phosphorylation of p85 subunit of PI3K and Akt. Dominant negative FAK augmented fibroblast apoptosis during collagen contraction, and this was associated with diminished Akt activity. Constitutively active FAK augmented levels of p85 subunit of PI3K and Akt phosphorylation, and fibroblasts were protected from apoptosis. Our data identify a novel role for FAK, functioning upstream of PI3K/Akt, in transducing a beta(1) integrin viability signal in collagen matrices.  相似文献   

20.
Our previous studies on the transmembrane domain of human integrin subunits have shown that a conserved basic amino acid in both subunits of integrin heterodimers is positioned in the plasma membrane in the absence of interacting proteins. To investigate the possible functional role of the lipid-embedded lysine in the mouse integrin beta1 subunit, this amino acid was replaced with leucine, and the mutated beta1 subunit (beta1A(K756L)) was stably expressed in beta1-deficient GD25 cells. The extracellular domain of beta1A(K756L) integrins possesses a competent conformation for ligand binding as determined by the ability to mediate cell adhesion, and by the presence of the monoclonal antibody 9EG7 epitope. However, the spreading of GD25-beta1A(K756L) cells on fibronectin and laminin-1 was impaired, and the rate of migration of GD25-beta1A(K756L) cells on fibronectin was reduced compared with GD25-beta1A cells. Phosphorylation of tyrosines in focal adhesion kinase (FAK) and the Y416 in c-Src in response to beta1A(K756L)-mediated adhesion was similar to that induced by wild-type beta1. The tyrosine phosphorylation level of paxillin, a downstream target of FAK/Src, was unaffected by the beta1 mutation, whereas tyrosine phosphorylation of CAS was strongly reduced. The results demonstrate that CAS is a target for phosphorylation both by FAK-dependent and -independent pathways after integrin ligation. The latter pathway was inhibited by wortmannin and LY294002, implicating that it required an active phosphatidylinositol 3-kinase. Furthermore, the K756L mutation in the beta1 subunit was found to interfere with beta1-induced activation of Akt. The results from this study identify phosphatidylinositol 3-kinase as an early component of a FAK-independent integrin signaling pathway triggered by the membrane proximal part of the beta1 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号