首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对Fenton氧化处理电镀废水进行了研究,探讨了Fenton反应中的H_2O_2投加量、Fe~(2+)与H_2O_2的物质的量比、pH值以及反应时间对COD去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量为0.06mol/L、[Fe~(2+)]/[H_2O_2]为1∶3、pH值为3、反应时间40min、反应温度25℃。在此条件下,废水COD从原来2750mg/L降为441mg/L,COD去除率可达到83.95%。  相似文献   

2.
采用絮凝-Fenton氧化工艺预处理灭多威农药生产废水。考察聚合氯化铝(PAC)和FeSO_42种絮凝剂的处理效果,发现FeSO_4的处理效果明显优于PAC。当FeSO_4质量浓度为34.2 g/L,废水pH值为7时,絮凝效果最好,CODCr去除率达35.2%。后续Fenton氧化的最适条件为:H_2O_2与Fe~(2+)物质的量之比为5∶1、30%H_2O_2加入量30 mL/L,pH值3,反应时间120 min。在此条件下CODCr去除率达76.8%。絮凝-Fenton氧化法CODCr总去除率达到85.0%。  相似文献   

3.
为了对比研究Fenton和EDTA-Fe~(3+)、 Fe~(3+)、 Fe~(6+)类Fenton试剂对盐酸四环素的氧化效果,考察了pH值、反应时间、 H_2O_2与铁离子的物质的量比、试剂投加量对盐酸四环素处理效果的影响。结果表明,pH值对EDTA-Fe~(3+)类Fenton氧化效果影响较小,Fenton、 Fe~(3+)和Fe~(6+)类Fenton技术最适pH值范围分别为3~5、 4~7和4。Fenton反应速度最快,20 min基本稳定,其次是EDTA-Fe~(3+)类Fenton反应,Fe~(6+)类Fenton反应速度最慢。Fenton、Fe~(3+)和Fe~(6+)类Fenton反应中H_2O_2与铁离子的最佳物质的量比为10∶1, EDTA-Fe~(3+)类Fenton反应中H_2O_2与铁离子的最佳物质的量比为13∶1。在最优试验条件下,盐酸四环素的降解效率依次为:Fenton> Fe~(3+)类Fenton> EDTA-Fe~(3+)类Fenton> Fe~(6+)类Fenton;4种反应试剂对CODCr的去除效率均不高,处理效果最好的是Fe~(3+)类Fenton试剂,CODCr去除率为21.4%,而EDTA-Fe~(3+)类Fenton处理后CODCr浓度高于进水。紫外-可见吸收光谱表明盐酸四环素在4种反应体系中均迅速下降,有小分子产物生成。4种试剂处理后出水色度均较高,后续需要脱色处理。  相似文献   

4.
Fenton氧化法是处理难生物降解的苯胺废水的有效方法。本文以苯胺去除率和COD去除率为指标,采用控制变量法探究Fe~(2+)投加量、H_2O_2投加量以及pH值等因素对Fenton试剂处理模拟苯胺废水的处理效果,分析Fenton试剂降解苯胺的机理。研究结果表明,对于浓度为10μg/mL的模拟苯胺废水,当0.5mol/L的FeSO_4溶液投加量为2.5mL、30%H_2O_2溶液投加量为1.5mL(Fe~(2+)与H_2O_2物质的量比约为10∶1),溶液pH值为3.0左右时,苯胺去除率可达到88%;在投加溶液稀释相同的倍数情况下,相应COD去除率可达到68%,为后续的生化处理提供有效条件。  相似文献   

5.
以Ni~(2+)、总磷和氨氮为考察对象,采用Fenton氧化和沸石吸附联合处理化学镀镍废水。探讨了Fenton破络及协同氧化非正磷酸盐时,H_2O_2的质量浓度、m(Fe~(2+))∶m(H_2O_2)、初始pH值对Ni~(2+)和总磷去除率的影响。另外,研究了沸石吸附氨氮时,沸石量、吸附时间、吸附pH值对氨氮去除率的影响。结果表明:当H_2O_2的质量浓度为6.66g/L、m(Fe~(2+))∶m(H_2O_2)为0.06、初始pH值为3时,破络完全,非正磷酸盐转化率为99.45%;同时,Ni~(2+)和总磷的去除率分别达到99.72%和91.88%。当沸石量为8g/100mL、pH值为7、反应时间为60min时,氨氮的去除率为86.30%。  相似文献   

6.
采用Fenton氧化法处理有机硅工业废水。通过正交试验和单因素试验,考察了反应时间、n(H_2O_2)/n(Fe~(2+))、温度、pH值和H_2O_2投加量等因素对废水CODCr去除率的影响。结果表明,Fenton氧化法的影响因素主次为:H_2O_2投加量、pH值、温度、n(H_2O_2)/n(Fe~(2+))、反应时间;在pH值为3、n(H_2O_2)/n(Fe2+)值为6、反应时间为60 min、温度为35℃的最佳条件下,对于CODCr的质量浓度为5 440 mg/L的有机硅废水,在100 m L的水样中投加14 mL H_2O_2(30%),可使CODCr的去除率达到90.92%。  相似文献   

7.
分别采用Fenton法及氢氧化物沉淀-Fenton法对模拟电镀废水进行处理。结果表明:单独采用Fenton法处理模拟电镀废水,当废水pH值为3、Fe~(2+)与H_2O_2的物质的量比为1.1时,虽然废水中COD的去除率能够达到91.6%,但Zn~(2+)、Cu~(2+)、Ni~(2+)的去除效果并不理想。先采用氢氧化物沉淀法对模拟电镀废水进行预处理,再采用Fenton法进行处理,COD的去除率可以达到93.6%,同时Zn~(2+)、Cu~(2+)、Ni~(2+)三者的去除率也均能达到98%以上。  相似文献   

8.
《应用化工》2022,(9):2440-2443
采用Fenton氧化法对橡胶硫化促进剂生产废水进行预处理,考察了酸析法以及H_2O_2投加量、Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量为2.8 g/L,反应时间为40 min。此时COD的去除率达82.91%。将酸析与Fenton氧化法联合后COD的去除率可达到85.78%,效果良好,为后续蒸发结晶分离氯化钠、硫酸钠奠定了基础。  相似文献   

9.
目前70%以上的城市生活垃圾被直接填埋,如果不能及时有效无害化处理垃圾渗滤液,将导致污染环境。采用Fenton,Fenton-Microwave和臭氧的高级氧化法处理生活垃圾渗滤液,研究了不同微波功率、pH值、H_2O_2和Fe~(2+)物质的量比、臭氧浓度等条件对垃圾渗滤液化学需氧量(COD_(cr))降解率的影响。结果表明Fenton法在pH值为3,H_2O_2和Fe~(2+)物质的量比为3,反应时间90 min条件下垃圾渗滤液(COD_(cr))降解率为52.32%,Fenton-Microwave法在pH值为5,H_2O_2和Fe~(2+)物质的量比3,微波功率为420W,微波辐射下反应时间6min条件下垃圾渗滤液COD_(cr)降解率为61.74%,臭氧氧化法在pH值为8,臭氧速度为30mg/min,催化剂Fe~(2+)和COD_(cr)质量比为3最佳条件下垃圾渗滤液COD_(cr)降解率为48.30%。  相似文献   

10.
采用Fenton试剂法处理固定床鲁奇加压煤气化制天然气过程中所产生的难降解有机废水,考察了pH值、H_2O_2量等因素对化学需氧量(COD)和酚去除率的影响。研究结果表明:当用Fenton试剂法处理鲁奇炉加压煤气化废水的初始pH值为3时,H_2O_2和催化剂Fe2+的物质的量比为5,H_2O_2和用Fenton试剂法对鲁奇炉加压煤气化废水的COD的质量比为3,反应时间为20min时,COD的去除率可达到90%,酚的去除率达到96%。  相似文献   

11.
采用Fenton法处理ABS树脂生产废水,以CODCr和浊度去除率作为评价指标,考察了pH值、H_2O_2投加量、Fe2+与H_2O_2物质的量比、反应时间等因素对处理效果的影响,并分析了Fenton氧化ABS废水的作用机理。结果表明:在室温下,pH值为3,H_2O_2投加量为24 m L/L,Fe2+与H_2O_2物质的量比为1∶8,反应时间为60 min的条件下,废水CODCr的去除率达到63.4%,浊度去除率达到99.5%。  相似文献   

12.
以刚果红废水为模拟染料废水,通过Co~(2+)对传统Fenton试剂进行改性研究,探索Co~(2+)与Fe~(2+)摩尔比、H_2O_2的投加量、反应温度及pH值对刚果红去除效果的影响。结果表明:Co~(2+)对传统Fenton试剂降解刚果红废水具有显著的促进作用,使得反应最佳pH值向近中性条件移动。当Co~(2+)与Fe~(2+)摩尔比为1∶1,3%H_2O_2投加量为2 mL,温度为65℃,pH值为7,降解60 min时,改性Fenton试剂对刚果红去除率达到98.2%。正交实验结果说明温度是最主要影响因素。  相似文献   

13.
采用Fenton氧化法对含油废水进行了深度处理,探讨了H_2O_2浓度、氧化剂与催化剂比例及催化剂改进等因素对废水中COD、BOD_5去除率的影响,结果表明:(1)随着H_2O_2浓度增加,含油废水中COD和BOD_5的去除率均呈现出先增加后逐渐下降或稳定的趋势,在浓度为40mmol/L时达到最大值;(2)随着氧化剂︰催化剂比例的增加,COD的去除率随之逐渐下降;(3)在H_2O_2浓度为60 mmol/L、H_2O_2︰Fe~(3+)为10︰1、pH值为3的正交实验条件下,其平均去除率最高,达到了73.48%,该结论可为含油废水深度处理提供实验依据。  相似文献   

14.
采用Fenton氧化-Na_2S沉淀法处理综合电镀废水,并研究了Fe~(2+)与H_2O_2的浓度比、Na_2S的投加量、废水最终pH值、反应温度及反应时间对残余金属离子质量浓度的影响。结果表明:当H_2O_2与Fe~(2+)的浓度比为1.0∶1.4、Na_2S的投加量为0.35 g/L、废水最终pH值为7.0时,在20℃下反应15 min后静置,上清液中残余Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的质量浓度均大幅降低,Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的去除率分别为92.8%、90.0%、91.3%、97.3%。可见,Fenton氧化-Na_2S沉淀法可有效去除综合电镀废水中的Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)等金属离子。  相似文献   

15.
采用低温等离子体协同Fenton氧化法处理聚丙烯酰胺(PAM)废水,研究了废水p H值、放电时间、放电电压、H_2O_2/Fe~(2+)比对PAM废水COD降解率的影响。结果表明,影响PAM废水COD降解率因素主次为:废水p H值放电时间放电电压H_2O_2/Fe~(2+),当PAM废水p H值4,放电时间60 min,放电电压8 k V,H_2O_2与Fe~(2+)比值为9∶1时,废水净化效果最好,PAM废水COD降解率为76.32%。  相似文献   

16.
采用微波辅助强化Fenton体系处理ABS树脂生产过程中的混合废水。文章探讨了微波照射时间、微波照射功率、pH值、H_2O_2投加量以及Fe~(2+)/H_2O_2摩尔比等因素对COD和浊度去除率的影响,并将微波辅助Fenton法与传统Fenton法进行比较。结果表明:在室温条件下,处理100 mL ABS废水,微波辅助Fenton体系最佳条件为微波照射时间150 s、微波功率600 W、pH值为3、H_2O_2投加量1.5 mL、Fe~(2+)/H_2O_2摩尔比1∶8,微波-Fenton法所需的时间仅为传统Fenton法的1/15,浊度去除率可达98%,COD去除率可达65%。  相似文献   

17.
以新疆某棉浆厂废水为研究对象,采用Fenton法对其深度处理,并进行工艺条件的优化。通过单因素实验考察了pH、Fe~(2+)与H_2O_2摩尔比、反应温度和反应时间对棉浆废水处理效果的影响,并采用响应面法对工艺条件进一步优化。结果表明,Fenton法可有效地降低棉浆废水的污染物含量,优化工艺条件为:pH为3.75,Fe~(2+)、H_2O_2摩尔比2.13:1,反应温度25℃、时间25 min。在此条件下,棉浆废水的COD去除率达95.4%,色素去除率达90.12%。研究结果可为化纤类企业废水的深度处理提供参考。  相似文献   

18.
以柠檬酸单独络合铜离子、柠檬酸单独络合镍离子、柠檬酸综合络合铜镍离子这3种模拟电镀废水为对象,采用芬顿(Fenton)、高锰酸钾(KMnO_4)以及过硫酸钠(Na_2S_2O_8)三种氧化法进行氧化破络,并结合加碱沉淀工艺对铜镍离子进行去除。结果表明,Fenton氧化法最佳反应参数:初始pH值为3.0,Fe~(2+):H_2O_2摩尔比为1:10,30%H_2O_2投加量为0.05 mL/L,反应时间为30 min。KMnO_4氧化法最佳反应参数:初始pH值为3.0~4.0,KMnO_4投加量为37.5 mg/L,反应时间为80 min。Na_2S_2O_8氧化法最佳反应参数:温度为20℃,初始pH值为2~7,S_2O_8~(2-):Fe~(2+)摩尔比为1:1,Na_2S_2O_8投加量为0.1 g/L,反应时间为90 min。对比三种氧化法,可以得出,对pH的适应性:Na_2S_2O_8氧化法KMnO_4氧化法Fenton氧化法;氧化效率:Fenton氧化法KMnO_4氧化法Na_2S_2O_8氧化法;经济效率:KMnO_4氧化法Na_2S_2O_8氧化法Fenton氧化法。因此,对于不同的废水,根据其特点选择合适的处理方法是十分必要的。  相似文献   

19.
在旋转填充床(RPB)中,研究了O_3/Fenton工艺处理模拟聚丙烯酰胺(PAM)污水的效果。考察了溶液p H值,Fe~(2+)浓度,H2O2浓度,O_3浓度,反应温度与RPB转速对PAM氧化降解率以及化学需氧量(COD)去除率的影响。结果表明,在pH值为4,Fe~(2+)浓度为0.25 mmol/L,H_2O_2浓度为0.8 mmol/L,O_3浓度为50 mg/L,反应温度为25℃,以及RPB转速为800 r/min的条件下,PAM氧化降解率和COD去除率可以达到96.82%与89.96%,表明采用RPB强化O_3/Fenton工艺处理PAM污水具有良好的效果。  相似文献   

20.
宋立杰 《净水技术》2020,39(8):102-108
针对苯胺污染地下水的异位修复问题,采用Fenton及臭氧氧化法进行处理,以TOC和苯胺的去除率为指标,分别对其工艺参数进行了优化,并对比分析了降解途径、去除效率和经济成本。结果表明,Fenton氧化去除苯胺的最佳工艺条件:当初始pH值为3.0、H_2O_2投加量为300 mmol/L、Fe~(2+)和H_2O_2的摩尔比为1∶3时,苯胺的去除率可以达到91.07%;臭氧氧化法的最佳工艺条件:当初始pH值为9、曝气速率为1 L/min、臭氧的投加量为360 mg/L、进气中臭氧的浓度为60 mg/L时,苯胺的去除率可以达到99.15%。成本核算表明,臭氧比Fenton反应具有更好的经济效益。降解途径分析表明,Fenton反应及碱性条件下臭氧反应过程中,硝基苯为苯胺氧化过程中的主要中间产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号