首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对yolov3算法应用于车辆类型检测中速度较快但精度相对较低的问题,提出在原始yolov3算法中使用GIoU代替均方差损失函数作为边界框回归损失函数,在边界框置信度损失函数中融入focal loss损失函数两种损失函数改进方法。实验结果表明改进后的yolov3模型在保持速度不变的情况下精度得到显著提升,在交通车型数据集中mAP值相比原始yolv3模型上升了3.62%,具有一定优势。  相似文献   

2.
在与听障人士进行交流时,常常会面临交流不便的困难,文中提出一种手语识别的改进模型来解决这个困难。该模型基于YOLOv7-tiny网络模型,并对其进行了多项改进,旨在提高模型的精度和速度。首先,通过对CBAM注意力机制的通道域进行改进,解决了因降维而造成的通道信息缺失问题,并将改进后的CBAM加入到YOLOv7-tiny的Neck层中,从而使模型更加精准地定位和识别到关键的目标;其次,将传统的CIoU边界框损失函数替换为SIoU边界框损失函数,以加速边界框回归的同时提高定位准确度;此外,为了减少计算量并加快检测速度,还将颈部层中的普通卷积模块替换为Ghost卷积模块。经过实验测试,改进后网络模型的平均精度均值(mAP)、精准率和召回率分别提升了5.31%、6.53%、2.73%,有效地提高了手语识别网络的检测精确度。  相似文献   

3.
针对目前主流的目标检测算法存在模型参数过大、不能很好地移植到移动设备端之中应用于辅助驾驶这一问题,本文提出了一种改进YOLOv5s的目标检测算法。首先,将YOLOv5s算法的主干网络CSPDarknet替换为轻量化网络模型MobileNet-V3,解决了网络模型较大、参数较多的问题,减少了网络的深度并提升了数据推断速度;其次,对特征提取网络采用加权双向特征金字塔结构Bi-FPN加强特征提取,融合多尺度特征进而扩大感受野;最后,对损失函数进行优化,使用CIoU为边界框回归损失函数,改善模型原始GIoU收敛速度较慢问题,使预测框更加符合于真实框,同时降低网络训练难度。实验结果表明,改进后算法在KITTI数据集上的mAP相较于YOLOv5s、SSD、YOLOv3、YOLOv4_tiny分别提升了4.4、15.7、12.4、19.6,模型大小相较于YOLOv5s与轻量级网络YOLOv4_tiny分别减少了32.4 MB和21 MB,同时检测速度分别提升了17.6%与43%。本文改进后的算法满足模型小、精确度高的要求,为辅助驾驶中道路目标检测提升检测速度与精度提供了一种解决方案。  相似文献   

4.
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。  相似文献   

5.
在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的情况。并且在回归任务中也存在样本不均衡的情况,大量的低质量样本影响了损失收敛。为了提高检测精度和回归收敛速度提出了一种新的边界框回归损失函数。首先确定设计思想并设计IoU系列损失函数的范式;其次在IoU损失的基础上引入两中心点形成矩形的周长和两框形成的最小闭包矩形周长的比值作为边界框中心点距离惩罚项,并且将改进的IoU损失应用到非极大值抑制(Non-Maximum Suppression,NMS)处理中。接着引入两框的宽高误差和最小外包框的宽高平方作为宽高惩罚项,确定CRIoU(Complete Relativity IoU,CRIoU)损失函数。最后在CRIoU的基础上加入自适应加权因子,对高质量样本的回归损失加权,定义了自适应聚焦CRIoU(Adaptive focal CRIoU,AF-CRIoU)。实验结果表明,使用AF-CRIoU损...  相似文献   

6.
针对传统算法依赖于对红外船舶目标与环境背景的精确分离和信息提取,难以满足复杂背景和噪声等干扰环境下的船舶目标检测需求,提出一种基于改进YOLOv5的红外船舶目标检测算法。在YOLOv5网络中添加Reasoning层,以一种新的提取图像区域间语义关系来预测边界框和类概率的体系结构,提高模型的检测精度,同时对YOLOv5目标检测网络的损失函数进行改进,从而达到进一步提高模型准确率的目的。验证结果表明,改进后的YOLOv5算法训练出来的模型,检测精确率和速度与实验列出的几种目标检测算法相比均有明显提升,其中平均精度均值(mAP)可达94.65%。该模型经过验证,既能满足检测的实时性要求,又能保证高精度。  相似文献   

7.
针对现有安全帽佩戴检测算法在复杂场景下存在密集目标检测难度大、小目标误检和漏检等问题,提出一种基于改进YOLOv5的安全帽佩戴检测算法。该算法主要在以下三个方面进行优化:通过在主干网络添加卷积块注意力模块(CBAM)来提取多个尺度的全局特征信息,使模型在通道和空间上更关注主要信息,得到更丰富的高层语义信息;将特征融合网络中的路径聚合网络(PAN)改进为加权双向特征金字塔网络(BiFPN),实现特征信息双向跨尺度连接和加权融合;将边界框回归损失函数改进为EIOU损失函数,加快边界框收敛速度和提高目标识别准确率。在自制的安全帽佩戴检测数据集上进行实验验证的结果表明:改进后的算法平均准确率(mAP)达到92.8%,相较于YOLOv5算法,改进后的算法在目标检测精确度和召回率上分别提升2.4%和1.8%。  相似文献   

8.
针对现有行人跌倒检测算法在复杂场景下存在漏检、检测精度低等问题,提出一种基于注意力机制的行人跌倒检测方法 YOLOX-s-EsE。改进的模型在骨干网络中引入SimAM注意力模块,在Bottleneck和特征融合模块增加ECA通道注意力模块,以进一步提取特征层的关键信息,损失函数采用EIo U,可以更有效地计算出预测框和真实框的差距,提升模型的精度。实验结果表明,改进后的算法在复杂环境下目标的检测效果有了明显的提升,相比原YOLOX-s模型,算法的mAP提高了约1.8%,达到了89.23%,精度提高了约4.6%,达到了91.79%。  相似文献   

9.
针对城市交通场景多目标检测算法检测速度慢,检测精度低等问题,本文提出多阶段提议稀疏区域卷积网络算法(Multi-stage Proposal Sparse Region-based Convolutional Neural Network,MPS R-CNN).算法主要有以下特点:提出了一种多阶段提议框过滤更新机制,提高算法检测精度;提出了一种双向并联特征金字塔网络(Bidirectional Parallel Feature Pyramid Network,BPFPN),增强了模型的特征融合能力;针对城市交通场景目标检测问题引入了CopyPaste数据增强方法和CIoU损失函数.实验结果显示,MPS R-CNN算法在Urban Object Dataset数据集上mAP达到了77%,算法检测速度保持在37 fps,优于目前其他城市交通场景目标检测算法.  相似文献   

10.
为提高无人机在复杂环境下对地面未爆弹(UXO)目标的辨识精度,提出了一种改进YOLOv5的UXO目标检测方法。该方法在YOLOv5的基础上,改进原YOLOv5网络的损失函数以提高对UXO目标的识别精度,同时,通过添加注意力机制、改进马赛克数据增强、改进预测框筛选机制提高对UXO目标的识别效率,实现了空对地场景下对UXO目标的检测,并具有较好的精度和速度。实验选取多组不同复杂背景的UXO数据集进行标注并训练,得到UXO目标模型,然后从模型训练结果和目标检测结果的角度评估方法和模型的正确性。实验结果表明:NGG-YOLOv5所得模型检测准确性和检测速度对比原YOLOv5有明显的提升,准确率从78%提高至91%,平均精度均值(mAP)从50%提高至56%,在所用4种复杂背景下均可有效检测出UXO目标,且漏警率低。  相似文献   

11.
针对航空发动机叶片缺陷检测过程中表面噪声较大以及检测精度较低的问题,提出了一种基于改进YOLOv5的叶片表面缺陷检测方法。通过叶片表面缺陷图像采集和典型缺陷标注构建了航空发动机叶片表面缺陷数据集;采用K-means++算法代替K-means算法对标记框进行聚类,获得最适合该数据集中标记框的锚框;在主干网络中结合CBAM注意力机制模块,并且采用EIoU损失函数替换原CIoU损失函数,提高对叶片表面缺陷特征的提取能力。对比实验结果表明所提出的方法相较于YOLOv5算法在平均精度均值上提升了1.4%,相较于FasterRCNN和YOLOv3,本方法在平均精度均值上分别提升了13%和2.9%。  相似文献   

12.
为提升YOLOv5算法对遥感图像密集目标的检测精度并改善漏检问题,提出了一种改进的YOLOv5遥感目标检测算法。改进方法首先采用7*7卷积模块替换骨干网络中Focus模块以增大模型感受野;其次,在保证与原模块效果相同的情况下使用SPPF以提升检测速度;最后,引入SIOU损失函数,利用边界框回归之间的向量角度来重新定义损失函数,有效提高了检测的准确性。实验结果表明,针对公开的NWPU VHR-10遥感数据集,所提改进算法在保持与原算法相同检测速度的情况下,检测精度提高了3.5%。  相似文献   

13.
无人机在军事情报、航拍检测等领域能够提供目标相关的图像信息,为处理任务提供目标信息。针对无人机图像背景复杂、检测目标小、可提取特征少等问题,提出基于YOLOv5s的改进无人机图像识别算法。首先,结合CotNet模块对网络结构进行优化,提升模型自学习能力并增强识别精度;其次,对颈部网络进行改进,通过跨层链接和提高特征图分辨率更好地利用浅层特征图中包含的丰富信息来定位目标,并且在检测头部分采用解耦检测头,减少预测过程中定位与分类任务对于特征信息的冲突;最后,为了提高收敛速度和模型精度,在CIoU和EIoU损失函数的基础上对损失函数的宽高纵横比进行优化。在公开数据集VisDrone测试集上进行测试,所提算法相比原始YOLOv5s算法的mAP50与mAP50∶95分别提升了6.1与2.9个百分点,实验结果表明,所提模型能够有效提升无人机图像识别的准确率。  相似文献   

14.
针对疫情背景下,在一些人流密集场所进行体温筛查或身份识别,当待检测对象快速通过时,人脸检测实时性不高的问题,提出了一种改进Yolov5模型的实时人脸检测算法。该算法首先对骨干网络层进行轻量化改进并引入注意力机制减少冗余信息;其次修改了检测层网络结构,增加了对小目标人脸及倾斜人脸检测的适应性;随之使用Focal EIOU损失函数代替Yolov5原始损失函数中的GIOU损失函数来计算定位损失,有效解决了预测框在目标框内部或预测框与目标框大小一致时无法精确定位的问题。实验结果表明:提出的实时人脸检测算法检测精度达到97.2%,检测速度达到66.7 f/s,相较于原始Yolov5算法,检测精度提升了19.7%,检测速度提升了24 f/s,满足实时人脸检测要求,同时对于黑暗环境及不同表情姿态人脸检测也有较好的适应性。  相似文献   

15.
在基于深度学习的单阶段目标检测中,从交并比(IoU)出发的边界框回归损失对边界框位置关系变化敏感度不够,当预测框与真值框处于不同包含关系时,已有损失无法精确区分。针对上述问题,提出基于IoU的回归位置关系敏感度损失(RPIoU)。该损失设计强化预测框和真值框相对位置关系的敏感度,首先在IoU后添加惩罚项,使两框角点无限靠近,解决中心点重合时IoU退化问题;其次引入非重叠区域面积与真值框面积比值为参数的指数函数作为惩罚项,解决损失无法区分预测框和真值框存在不同包含关系的问题,更精准地指导边框回归的位置;考虑到单阶段目标检测算法总损失各部分对于训练结果的贡献度不同,以平均精度均值(mAP)作为适应度函数,利用遗传算法对训练总损失进行优化,得到分类、回归、置信度损失的各自最佳权重。将设计的损失应用于单阶段目标检测算法YOLOv5,分别在可见光公开数据集VisDrone和自制红外飞机数据集上进行验证。在可见光公开数据集上的mAP达到0.447,比原始YOLOv5提升0.037;在红外飞机数据集的mAP达到0.966,比原始YOLOv5提升0.014。  相似文献   

16.
针对铁轨表面裂缝的小目标特征及传统检测方法精度低,速度慢等问题,提出一种基于改进YOLOV4的目标检测算法。首先,使用改进的RFB(receptive field block)模块替换空间金字塔池化(spatial pyramid pooling, SPP)结构,以获取特征图更大的有效感受野区域,提升算法的检测精度;其次,采用深度可分离卷积结构替代网络模型中的普通卷积结构,使网络轻量化、提升检测速度;同时,利用K-means++算法重新获取锚框,再对得到的锚框进行线性尺度变化,解决原锚框不适合小目标检测的问题。结果表明改进的YOLOV4算法,平均精度均值(mean average precision,mAP)达到84.8%,相对于原YOLOV4算法提高了3.4%;检测速度(frames per second,FPS)为62.39帧/s,提高了4.07帧/s。  相似文献   

17.
针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失、提高小目标检测能力;提出多信息流融合注意力机制——Spatial and Channel Attention Mechanism(SCA),动态调整注意力对空间信息流和语义信息流的关注,获得更丰富的特征信息以提高捕获目标的能力;更换损失函数为SIoU,加快模型收敛速度。在公开数据集VisDrone2019上进行对比实验,改进后算法的mAP50值相比YOLOv7提高了4%,达到了52.4%,FPS为37,消融实验验证了每个模块均提升了检测精度。实验表明,改进后的算法能较好地检测无人机图像中的目标。  相似文献   

18.
针对目前遥感图像目标检测算法中存在的误检、漏检和检测精度低等问题,提出了一种改进YOLOv8的遥感图像检测算法。在主干网络中引入注意力机制EMA到C2f模块,以提高模型对多尺度目标的特征提取能力;在颈部网络中提出Slim-PAN结构,以减少模型计算量;使用WIOU损失函数代替CIOU损失函数,以提升模型的检测精度。通过在DIOR和RSOD遥感数据集上的实验结果表明,改进后的算法与原YOLOv8算法相比,mAP分别提升了1.5%和2.3%,计算量降低了0.3 GFLOPs,改进算法在不增加计算量的同时能提高检测精度,证明了改进算法的有效性和先进性。  相似文献   

19.
针对目前航空发动机表面人工缺陷检测效率低的问题,提出一种基于改进YOLOv5的缺陷检测模型YOLOv5-CE。首先,在网络中融合数据增强策略搜索算法,自动为当前数据集搜索最佳的数据增强策略,实现训练效果的提升;其次,在backbone网络中引入坐标注意力机制,在通道注意力的基础上嵌入坐标信息,提高对小缺陷目标的检测能力;最后,将YOLOv5的定位损失函数改进为efficient intersection over union损失,在加快模型收敛的同时提高预测框回归精度。实验结果表明,所提YOLOv5-CE模型,相比原YOLOv5s网络,在检测速度几乎没有下降的情况下平均精度均值提高了1.2个百分点,达到了98.5%,能够高效智能检测航空发动机4种常见类型缺陷。  相似文献   

20.
针对现存无人机航拍图像目标检测算法检测精度较低、模型较为复杂的问题,提出一种改进YOLOv8的目标检测算法。在骨干网络引入多尺度注意力EMA,捕捉细节信息,以提高模型的特征提取能力;改进C2f模块,减小模型的计算量。提出了轻量级的Bi-YOLOv8特征金字塔网络结构改进YOLOv8的颈部,增强了模型多尺度特征融合能力,改善网络对小目标的检测精度。使用WIoU Loss优化原网络损失函数,引入一种动态非单调聚焦机制,提高模型的泛化能力。在无人机航拍数据集VisDrone2019上的实验表明,提出算法的mAP50为40.7%,较YOLOv8s提升了1.5%,参数量降低了42%,同时相比于其他先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性和先进性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号