首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of the leaf-chlorosis-eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and the nonchlorosis-eliciting bird cherry-oat aphid, Rhopalosiphum padi (L.), feeding on D. noxia-susceptible and -resistant cereals was examined during the period (i.e., 3, 6, and 9 d after aphid infestation) that leaf chlorosis developed. After aphid number, leaf rolling and chlorosis ratings, and fresh leaf weight were recorded on each sampling date, total protein content, peroxidase, catalase, and polyphenol oxidase activities of each plant sample were determined spectrophotometrically. Although R. padi and D. noxia feeding caused significant increase of total protein content in comparison with the control cereal leaves, the difference in total protein content between R. padi and D. noxia-infested leaves was not significant. Although R. padi-feeding did not elicit any changes of peroxidase specific activity in any of the four cereals in comparison with the control leaves, D. noxia feeding elicited greater increases of peroxidase specific activity only on resistant 'Halt' wheat (Triticum aestivum L.) and susceptible 'Morex' barley (Hordeum vulgare L.), but not on susceptible 'Arapahoe' and resistant 'Border' oat (Avena sativa L.). D. noxia-feeding elicited a ninefold increase in peroxidase specific activity on Morex barley and a threefold on Halt wheat 9 d after the initial infestation in comparison with control leaves. Furthermore, D. noxia feeding did not elicit any differential changes of catalase and polyphenol oxidase activities in comparison with either R. padi feeding or control leaves. The findings suggest that D. noxia feeding probably results in oxidative stress in plants. Moderate increase of peroxidase activity (approximately threefold) in resistant Halt compared with susceptible Arapahoe wheat might have contributed to its resistance to D. noxia, whereas the ninefold peroxidase activity increase may have possibly contributed to barley's susceptibility. Different enzymatic responses in wheat, barley, and oat to D. noxia and R. padi feeding indicate the cereals have different mechanisms of aphid resistance.  相似文献   

2.
Interspecific interactions between the symptomatic (chlorosis-eliciting) Russian wheat aphid, Diuraphis noxia (Mordvilko), and the asymptomatic (nonchlorosis-eliciting) bird cherry-oat aphid, Rhopalosiphum padi (L.), on four cereal genotypes were examined by simultaneous infestations. Four cereals (i.e., Diuraphis noxia-susceptible 'Arapahoe' wheat and 'Morex' barley, and D. noxia-resistant 'Halt' wheat and 'Border' oat) and four infestations (i.e., control, D. noxia, R. padi, and D. noxia/R. padi) were used in the research. Whereas D. noxia biomass confirmed D. noxia resistance among the cereals, R. padi biomass indicated that the D. noxia-resistant cereals did not confer R. padi resistance. D. noxia biomass was significantly lower in D. noxia/R. padi infestation than that in D. noxia infestation on all cereals, except Border oat, which indicated an antagonistic effect of R. padi on D. noxia. All aphid infestations caused a significant plant biomass reduction in comparison with the control. In comparison with D. noxia infestation, D. noxia/R. padi caused a significant plant biomass reduction on all cereals, except Morex barley. Although D. noxia biomass in D. noxia/R. padi infestation was significantly less than that in D. noxia infestation, leaf chlorophyll reduction was the same between D. noxia/R. padi and D. noxia infestations, which suggested that the asymptomatic R. padi enhanced the D. noxia-elicited leaf chlorophyll loss. The regression between chlorophyll content and aphid biomass indicated that the asymptomatic R. padi in the D. noxia/R. padi infestation enhanced chlorophyll loss, but interspecific aphid interaction on plant biomass varied among the cereals.  相似文献   

3.
A study to determine yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), was conducted during the 1997-1998 and 1998-1999 growing seasons at three eastern Colorado locations, Akron, Fort Collins, and Lamar, with three wheat lines containing either Russian wheat aphid-resistant Dn4 gene, Dn6 gene, or resistance derived from PI 222668, and TAM 107 as the susceptible control. Russian wheat aphids per tiller were greater on TAM 107 than the resistant wheat lines at the 10x infestation level at Fort Collins and Akron in 1999. Yield, seed weight, and number of seeds per spike for each wheat line were somewhat affected by Russian wheat aphid per tiller mainly at Fort Collins. The infested resistant wheat lines harbored fewer Russian wheat aphids and yielded more than the infested susceptible wheat lines. Wheat lines containing the Dn4, Dn6, and PI 222668 genes contain different levels of antibiosis or antixenosis and tolerance. Although differences existed among sites and resistance, there is a benefit to planting resistant wheat when there is a potential for Russian wheat aphid infestations.  相似文献   

4.
The species composition, relativeabundance, and seasonal dynamics of selectednatural enemies of cereal aphids were monitoredin spring wheat fields in Moscow, Idaho in 1997and 1998. Trials also examined the potentialimpact of resistance to Russian wheat aphid(RWA), Diuraphis noxia (Mordvilko)(Homoptera: Aphididae) in wheat, on aphidbiological control agents. Natural enemypopulations were monitored on two springwheats: D. noxia susceptible variety`Centennial' and resistant genotype `IDO488'. Field plots were artificially infested withadult D. noxia, and sampled for cerealaphids and parasitoids weekly. Coccinellidpredators were monitored once in 1997 and twicein 1998. The coccinellids Hippodamiaconvergens Guerin, Coccinellaseptempunctata L., C. transversoguttataBrown and C. trifasciata Mulsant weredetected. No significant differences in adultor immature coccinellid densities were observedbetween the D. noxia resistant andsusceptible genotypes. During both years, themost abundant primary hymenopteran parasitoidswere Diaeretiella rapae (M'Intosh), Aphidius ervi Haliday, A. avenaphis(Fitch), and Lysiphlebus testaceipes(Cresson), Aphelinus varipes (Foerster),Aphidius colemani Viereck, Aphidiuspicipes (Nees), Aphidius sp., Monoctonus washingtonensis Pike & Stary, Praon gallicum Stary, Praon occidentaleBaker, and Praon sp. were also detected. Numbers of both D. noxia and D.rapae were significantly greater on Centennialthan on IDO488 in both years. When all speciesof cereal aphids and parasitoids areconsidered, the total percentage parasitism wasnot significantly different between thegenotypes. There was no interaction betweenD. noxia resistance and the populationdensity of the predators or parasitoidsmonitored. These results suggest that the D. noxia resistant line had no adverse impacton natural enemies under the conditions ofthese field experiments.  相似文献   

5.
Russian wheat aphid, Diuraphis noxia (Mordvilko), feeding injury on 'Betta' wheat isolines with the Dn1 and Dn2 genes was compared by assessing chlorophyll and carotenoid concentrations, and aphid fecundity. The resistant Betta isolines (i.e., Betta-Dn1 and Betta-Dn2) supported similar numbers of aphids, but had significantly fewer than the susceptible Betta wheat, indicating these lines are resistant to aphid feeding. Diuraphis noxia feeding resulted in different responses in total chlorophyll and carotenoid concentrations among the Betta wheat isolines. The infested Betta-Dn2 plants had higher levels of chlorophylls and carotenoids in comparison with uninfested plants. In contrast, infested Betta-Dn1 plants had the same level of chlorophyll and carotenoid in comparison with uninfested plants. Our data provide essential information on the effect of D. noxia feeding on chlorophyll and carotenoid concentrations for Betta wheat and its isolines with D. noxia-resistant Dn1 and Dn2 genes.  相似文献   

6.
Forty-one accessions of wild and cultivated wheats belonging to 19 Triticum species were tested in the field for resistance to three species of aphids, Rhopalosiphum padi Linnaeus, Sitobion avenae Fabricius and Schizaphis graminum Rondani. Antibiotic resistance was estimated by the increase in biomass of aphids over 21 days on adult plants. Overall resistance was estimated by the plant biomass lost due to aphid infestation. All three species of aphids survived and reproduced on all wheats, and reduced spike biomass compared to uninfested controls. The level of antibiosis varied among wheat species and among accessions, with accessions from three, five and one species showing antibiosis to R. padi, S. avenae and S. graminum, respectively. Overall resistance to the three aphid species was observed in five to seven accessions per aphid species. Resistance was usually specific to one aphid species. The frequency of accessions with antibiosis or overall resistance was associated with the ploidy level of the plant species. Except for overall resistance to R. padi, resistance was highest for diploid species and lowest for hexaploid species. No consistent relationship between resistance and level of domestication was detected. Accessions of the wild wheats, Triticum boeoticum Bois, Triticum tauschii (Coss.) Schmal. and Triticum araraticum Jakubz. exhibited high levels of resistance to aphids, as did Triticum monococcum L. which is derived from T. boeoticum. Nevertheless, individual susceptible or resistant accessions occurred at all levels within the evolutionary tree of wheat.  相似文献   

7.
Plant and aphid biomass, photosynthetic pigment (chlorophylls a and b and carotenoids) concentrations, and chlorophyll a/b and chlorophyll/carotenoid ratios were quantified in aphid-infested 'Tugela' near-isogenic lines (Tugela, Tugela-Dn1, Tugela-Dn2, and Tugela-Dn5). The objectives were to quantify changes of photosynthetic pigments (chlorophylls a and b, and carotenoids) caused by aphid feeding and assess resistance of wheat isolines through aphid and plant biomass analysis. Biomass of bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae)-infested plants was lower than Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae),- infested plants. When infested by D. noxia, all lines showed increased biomass over time, except Tugela where biomass decreased on day 12. No difference in plant biomass was detected among R. padi-infested and uninfested wheat lines. Biomass of D. noxia from Tugela (D. noxia-susceptible) was significantly higher than from plants with Diuraphis noxia-resistant Dn genes. Diuraphis noxia biomass from Tugela-Dn1 and Dn2 lines was not different from each other, but they were lower than from Tugela-Dn5. In contrast, there was no difference in R. padi biomass among wheat lines. Concentrations of chlorophylls a and b and carotenoids were significantly lower in D. noxia-infested plants compared with R. padi-infested and uninfested plants. When infested by D. noxia, chlorophyll a and b concentrations were not different among wheat lines on day 3, but they were lower in Tugela and Tugela-Dn1 than in Tugela-Dn2 and -Dn5 plants on days 6 and 12. However, no difference was detected in chlorophyll a/b or chlorophyll/carotenoid ratio among Tugela lines. The study demonstrated that Dn genes in the Tugela isolines conferred resistance to D. noxia but not to R. padi. Tugela-Dn1 was antibiotic, Tugela-Dn2 was tolerant and antibiotic, and Tugela-Dn5 was moderately antibiotic.  相似文献   

8.
Russian wheat aphid, Diuraphis noxia, and parasitoid abundance was monitored on field-grown barley, Hordeum vulgare L., varying in D. noxia susceptibility, to address the applicability of previous laboratory assessments of barley seedling resistance and parasitoid compatibility. Study sites were representative of the barley production region of the High Plains in the western USA, where D. noxia and its parasitoids occur. D. noxia abundance on resistant barley lines, characterized as partially tolerant and antibiotic to the aphid, was lower than on more susceptible lines. Parasitism by Diaeretiella rapae, Aphelinus albipodus, and A. asychis differed in seasonal occurrence and abundance. D. rapae mummies occurred sooner than aphelinid mummies, and there were larger increases in aphelinid mummies than in D. rapae mummies during seed head development. But in regard to plant resistance, parasitoid abundance, relative to D. noxia abundance, was similar on resistant and susceptible barley lines. Based on the susceptibility of commercial barley to D. noxia, the seasonal abundance of D. noxia and its parasitoids, and the compatibility of resistant barley and D. noxia parasitoids, the use of resistant barley in areas of parasitoid establishment is justified.  相似文献   

9.
Previous field experiments indicated that the presence of the bird cherry-oat aphid, Rhopalosiphum padi (L.), on perennial grasses can decrease the effectiveness of predatory lacewings, Chrysoperla plorabunda (Fitch), in reducing populations of the Russian wheat aphid, Diuraphis noxia (Mordvilko). We tested the hypothesis that R. padi deflects predation away from D. noxia because it feeds in sites that are more accessible to predators. We quantified the behavior of lacewing larvae on crested wheatgrass plants bearing either D. noxia alone or an equal mixture of D. noxia and R. padi. On non-flowering plants, R. padi typically occurred on leaf sheaths or open blades, and was encountered and captured more often than D. noxia, which usually fed within immature, rolled leaves. Overall time-budgets of lacewings did not differ between the pure-D. noxia and mixed-species treatments, but >75% of the time spent consuming aphids in the mixed-species treatment was devoted to R. padi. On flowering plants, D. noxia usually aggregated on the flag leaf below the inflorescence, whereas R. padi occurred mostly on leaf sheaths. Predators again captured R. padi more often than D. noxia, and spent more time consuming aphids in the mixed-species treatment than in the pure-D. noxia treatment. These behavioral observations support the hypothesis that non-target prey can hamper the short-term effectiveness of biological-control agents against D. noxia.  相似文献   

10.
Broadening the genetic base for resistance to Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), in bread wheat, Triticum aestivum L., is desirable. To date, identified Russian wheat aphid resistance genes are either located to the D chromosomes or to rye translocation of wheat, and resistance derived from the A or B genomes of tetraploid Triticum spp. would therefore be highly beneficial. Fifty-eight synthetic hexaploid wheat, derived from interspecific crosses of Triticum dicoccum Schrank. and Aegilops tauschii (Coss.) Schmal. and their parents were evaluated for resistance to Russian wheat aphid under field conditions. Plots infested with aphids were compared with plots protected with insecticides. The T. dicoccum parents were highly resistant to Russian wheat aphids, whereas the Ae. tauschii parents were susceptible. Resistance levels observed in the synthetic hexaploids were slightly below the levels of their T. dicoccum parents when a visual damage scale was used. but no major resistance suppression was observed among the synthetics. Russian wheat aphid infestation on average reduced plant height and kernel weight at harvest in the synthetic hexaploids and the T. dicoccum parents by 3-4%, whereas the susceptible control 'Seri M82' suffered losses of above 20%. Because resistance in the synthetic hexaploid wheat is derived from their T. dicoccum parent, resistance gene(s) must be located on the A and/or B genomes. They must therefore be different from previously identified Russian wheat aphid resistance genes, which have all been located on the D genome of wheat or on translocated segments.  相似文献   

11.
It is hypothesized that the interaction between aphids and plants follows a gene-for-gene model. The recent appearance of several new Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), biotypes in the United States and the differential response of wheat, Triticum aestivum L., genotypes containing different resistance genes also suggest a gene-for-gene interaction. However, aphid elicitors remain unknown. This study was conducted to identify fractionated Russian wheat aphid extracts capable of eliciting differential responses between resistant and susceptible wheat genotypes. We extracted whole soluble compounds and separated proteins and metabolites from two Russian wheat aphid biotypes (1 and 2), injected these extracts into seedlings of susceptible wheat Gamtoos (dn7) and resistant 94M370 (Dn7), and determined phenotypic and biochemical plant responses. Injections of whole extract or protein extract from both biotypes induced the typical susceptible symptom, leaf rolling, in the susceptible cultivar, but not in the resistant cultivar. Furthermore, multiple injections with protein extract from biotype 2 induced the development of chlorosis, head trapping, and stunting in susceptible wheat. Injection with metabolite, buffer, or chitin, did not produce any susceptible symptoms in either genotype. The protein extract from the two biotypes also induced significantly higher activities of three defense-response enzymes (catalase, peroxidase, and beta-glucanase) in 94M370 than in Gamtoos. These results indicate that a protein elicitor from the Russian wheat aphid is recognized by a plant receptor, and the recognition is mediated by the Dn7-gene product. The increased activities of defense-response enzymes in resistant plants after injection with the protein fraction suggest that defense response genes are induced after recognition of aphid elicitors by the plant.  相似文献   

12.
小麦不同品种上麦蚜及其天敌的数量变动   总被引:6,自引:1,他引:5  
试验结果表明小麦品种 (系 )的抗性对麦蚜种群数量影响很大 ,百株蚜量随着小麦品种抗性增强而下降。而同一小麦品种对不同种蚜虫的抗性存在质的差异 ,铭贤 1 69品种 ,蚜高峰期百株蚜量麦长管蚜 63 0头 ,禾谷缢管蚜只有 1 1 5头 ,两者相差 5 5倍。另一方面 ,小麦品种抗性对麦田天敌的种群数量影响不大 ,而对天敌的发生期有些影响。因此 ,小麦品种抗性、天敌对麦蚜的自然控制能力 ,可把小麦中后期的蚜虫虫口密度控制在经济损失允许水平之下。  相似文献   

13.
Elicitors are molecules which can induce the activation of plant defence responses. Elicitor activity of intercellular wash fluid from Russian wheat aphid, Diuraphis noxia (Mordvilko) infested resistant (cv Tugela DN), and susceptible (cv Tugela), wheat (Triticum aestivum L.), was investigated. Known Russian wheat aphid resistance related responses such as peroxidase and beta-1,3-glucanase activities were used as parameters of elicitor activity. The intercellular wash fluid from infested resistant plants contains high elicitor activity while that from infested susceptible plants contains no or very little elicitor activity. After applying C-18 reverse phase and concanavalin A Sepharose chromatography, elicitor active glycoproteins were isolated from the intercellular wash fluid of Russian wheat aphid infested resistant wheat. The elicitor-active glycoproteins separated into three polypeptides during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated glycoproteins elicited peroxidase activity to higher levels in resistant than in susceptible cultivars. It was evident that the glycoproteins were probably a general elicitor of plant origin. Information gained from these studies is valuable for the development of plant activators to enhance the defence responses of plants.  相似文献   

14.
Abstract:  Aphid behaviour-modifying semiochemicals were tested against Russian wheat aphid Diuraphis noxia in South African wheat. Volatile substances from plant essential oils, methyl salicylate, 1,8-cineole and menthol were tested in the laboratory and field in combination with the D. noxia -susceptible wheat variety Betta and the resistant variety Elands. All three substances were repellent to D. noxia in olfactometric tests. Diuraphis noxia settled less on Elands plants that had been exposed to the volatiles, whereas the effect of the volatiles on D. noxia settling on Betta was less obvious. A slow-release pellet formulation was used to apply semiochemicals in wheat in replicated plot field trials in 2004 and 2005. In 2004, semiochemicals reduced aphid populations in Elands, but led to increased aphid populations in Betta. Further, the impact of the chemicals on aphid numbers and grain quality (thousand grain weight) varied according to plant variety, indicating an interaction between semiochemicals and plant resistance/variety.  相似文献   

15.
Genetic resistance is a useful control strategy for managing Russian wheat aphid, Diuraphis noxia (Mordvilko), in wheat, Triticum aestivum L. In 2003, a Russian wheat aphid population (denoted as biotype 2) identified in Colorado was virulent to genotypes carrying the Dn4 Russian wheat aphid resistance gene, necessitating the rapid identification and deployment of new sources of resistance. Although the Dn7 gene had shown excellent resistance to Russian wheat aphid biotypes 1 and 2 in evaluations in the greenhouse, no information is available on the amount of protection provided by Dn7 under field conditions. The objective of this study was to compare the reaction of Dn4- and Dn7-carrying spring wheat genotypes under artificial infestation by Russian wheat aphid biotype 1 in the field. Irrigated field experiments were conducted in 2003 and 2004 in a split-split plot arrangement with six replications. The whole plot treatment was infestation level (control, 1x, and 10x Russian wheat aphids), and the subplot treatment was resistance source (Dn4- and Dn7-carrying genotypes). The sub-subplot treatment consisted of side-by-side planting of resistant and susceptible genotypes. The Dn4 subplot was significantly more damaged than the Dn7 subplot in 2003, but not in 2004. Interaction effects observed in 2004 suggested an advantage of Dn7 relative to Dn4 in terms of reduced Russian wheat aphid abundance and plant damage. Deployment of the Dn7 Russian wheat aphid resistance gene should provide protection in the field comparable with that provided by the Dn4 resistance gene for management of Russian wheat aphid biotype 1.  相似文献   

16.
Abstract. 1. The population growth of three aphid species, Metopolophium dirhodum (Walker), Rhopalosiphum padi (L.), and Sitobion avenae (F.), on winter wheat, was analysed by regression. The calculations were based on censuses of aphids made in 268 plots at 3- or 7-day intervals for 10 years on leaves and 6 years on ears. The calculations were made separately for each plot each year, then repeated on the pooled data from all plots monitored in a year.
2. At the level of individual plots, no population growth was detected at very low densities. At high densities, the populations grew exponentially and the growth rates did not decrease with increasing aphid density.
3. Significant growth was always detected in the pooled data. These growth rates decreased significantly at the highest densities. Field estimates of the intrinsic rate of increase derived from these data ranged from 0.010 to 0.026 for M. dirhodum , 0.0071–0.011 for R. padi , and 0.00078–0.0061 and 0.0015–0.13 for S. avenae , on leaves and ears respectively .
4. The apparent lack of growth in the individual plots at low densities is attributable to small sample size. It is concluded that the natural enemy ravine in the population dynamics of cereal aphids, identified by Southwood and Comins (1976), is a consequence of low population densities at which population increase is undetectable unless very large samples are taken.  相似文献   

17.
郭光喜  刘勇 《昆虫知识》2005,42(5):534-536
用四臂嗅觉计测定了麦长管蚜Macrosiphum avenae和禾谷缢管蚜Rhopalosiphum padi对小麦植株挥发物及麦蚜取食诱导挥发物的行为反应,揭示了2种麦蚜的嗅觉及小麦植株的诱导防御反应特点.在所选的13种小麦植株挥发物及蚜害诱导挥发物组分中,6-甲基-5-庚烯-2-酮、6-甲基-5-庚烯-2-醇和水杨酸甲酯对这2种蚜虫表现出强的驱拒作用;反-2-己烯醛对麦长管蚜的有翅和无翅蚜的吸引作用最强;反-2-己烯醇对禾谷缢管蚜的无翅蚜吸引作用最强,反-3-己酰醋酸酯对禾谷缢管蚜有翅蚜的吸引作用最强.说明麦蚜取食能诱导小麦植株的防御反应,麦长管蚜和禾谷缢管蚜及其不同蚜型间嗅觉反应的特点不同.  相似文献   

18.
Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.  相似文献   

19.
The Russian wheat aphid, Diuraphis noxia (Kurdjumov), is an economically important pest of small grains. Since its introduction into North America in 2003, Russian wheat aphid Biotype 2 has been found to be virulent to all commercially available winter wheat, Triticum aestivum L., cultivars. Our goal was to examine differences in Russian wheat aphid reproduction and development on a variety of plant hosts to gain information about 1) potential alternate host refuges, 2) selective host pressures on Russian wheat aphid genetic variation, and 3) general population dynamics of Russian wheat aphid Biotype 2. We studied host quality of two wheatgrasses (crested wheatgrass, Agropyron cristatum [L.] Gaertn., and intermediate wheatgrass, Agropyron intermedium [Host] Beauvoir) and two types of winter wheat (T. aestivum, one Biotype 2 susceptible wheat, 'Custer' and one biotype 2 resistant wheat, STARS02RWA2414-11). The susceptible wheat had the highest intrinsic rate of increase, greatest longevity and greatest fecundity of the four host studied. Crested wheatgrass and the resistant wheat showed similar growth rates. Intermediate wheatgrass had the lowest intrinsic rate of increase and lowest fecundity of all tested hosts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号