首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar energy is accessible throughout the year in tropical regions. The latest development of absorption chillers has demonstrated that these systems are suitable for effective use of solar energy. The utilisation of solar energy for heat-driven cooling systems has significant advantages. Without a doubt, solar energy represents a clean energy source that is available without any additional fuel cost, and that can be proportionally accessible when the cooling load increases during the middle hours of the day. This study focuses on a single-double-effect absorption chiller machine that was installed in Indonesia. The system is driven by a dual-heat source that combines gas and solar energy. This system is characterised by simulating its performance in various conditions in terms of the cooling water (28–34 °C) and the hot water (75–90 °C) inlet temperatures. The reference operating condition of this system is 239 kW of cooling capacity. The mathematical model is validated and shows a good agreement with experimental data. In the operative range considered, simulation results yield a coefficient of performance between 1.4 and 3.3, and a gas reduction ratio from 7 to 58% when compared to a double-effect absorption chiller driven by gas. Based on the simulation results, this system is expected to have a good potential for widespread use in tropical Asia regions.  相似文献   

2.
Vapour absorption cooling systems, powered by solar thermal energy, are now commercially manufactured in sizes ranging from 1.5 to over 20 RT (one refrigeration ton = 3.51 kW of cooling). The needed thermal energy at appropriate temperature potential can either be provided by solar thermal collectors or else from a solar pond. The paper gives the assessment criteria and results for technical and economic evaluation of the performance of absorption chiller using a solar pond. These results, based on Kuwait's environmental data and costs, have been compared with three alternate cooling systems, namely:
  • 1 Solar thermal collector absorption cooling system.
  • 2 Solar photovoltaic cooling system.
  • 3 Standard vapour compression cooling system.
The criteria, used for performance evaluation of the solar cooling systems on a technical basis, consists of assessing the extent to which such systems can make a positive contribution in a conserving fossil fuel. This is done by first estimating the total electrical energy needed by the standard system (defined in para. 3 above) to produce one unit of cooling output. Solar cooling systems are then analysed and compared with a standard system to establish their electrical energy saving or generation capability, after accounting for the parasitic electrical energy used in pump/fan motors and equivalent energy needed for the production of soft water (used-up in the cooling tower) from seawater desalination. The economic analysis considers the cost and life of subsystems and that of the electrical and water desalination plants to arrive at the unit cooling cost. The unit cooling is defined as the ratio of amortized capital investments plus operation and maintenance costs over the year and the total yearly cooling production by the system. The results show that the solar pond absorption cooling system is the closest competitor to the conventional cooling system.  相似文献   

3.
This work is devoted to the study of the entropy generated, the exergy destroyed and the exergetic efficiency of lithium-bromide absorption thermal compressors of single and double effect, driven by the heat supplied by a field of solar thermal collectors. Two different applications have been considered and compared: air-cooled and water-cooled units. Water-cooled compressors work with temperatures and pressures lower than air-cooled compressors considering, in both cases, the same suction temperature, equal to 5°C. While the absorption temperature in water-cooled compressors can reach 40°C, in air-cooled systems it can vary between 30°C and more than 50°C. Under these conditions, the discharge temperature (boiling temperature within the desorber) of a single effect air-cooled unit lies between 65 and 110°C, the maximum discharge pressure being around 0.12 bar. The discharge temperatures (boiling temperature within the high pressure desorber) of the double effect air-cooled thermal compressor lies between 110°C for a final absorption temperature of 30°C, and 180°C for a final absorption temperature of 50°C. Discharge pressures can reach values of 0.3 and 1.5 bar, respectively. The lithium-bromide air-cooled thermal compressors of double-effect can be viable with absorption temperatures around 50°C, when the temperature difference between the lithium-bromide solution and the outside air is about 8°C. The double effect thermal compressor generates less entropy and destroys less exergy than the single effect unit, leading to a higher exergetic efficiency. In both cases, the compression process of the cooling fluid occurs with entropy reduction.  相似文献   

4.
Based on experiences with an operating solar cooling system in south China, a low temperature driven solar cooling system has been proposed, and a new model of two-stage lithium bromide absorption chiller has been developed. Test results have proved that the two-stage chiller could be driven by low temperature hot water ranging from 60 to 75°C, which can be easily provided by conventional solar hot water systems. Relying on the successes of the above system, an integrated solar cooling and heating system with two-stage absorption chiller was constructed (cooling CAPACITY=100 kW). Preliminary operating data of the system has indicated that this type of system could be efficient and cost effective. Compared to the conventional cooling system (with single-stage chiller), the proposed system with a two-stage chiller could achieve roughly the same total COP as of the conventional system with a cost reduction of about 50%.  相似文献   

5.
The high energy consumption in buildings in Mediterranean countries, especially in the spring and summer months due to the extensive use of air conditioning, requires immediate actions to minimise energy costs and environmental impact given the current energy crisis. Solar cooling systems offer an attractive solution, but the main drawbacks of this type of systems are the low efficiency of the currently used single-effect absorption chillers and the large areas of thermal collectors needed to produce the thermal energy. These large solar installations make difficult their building integration. A way to overcome these difficulties is the use of high efficient integrated solar concentrator systems able to achieve temperatures around 150 °C that could be used to activate the more energy efficient double-effect absorption chillers. In the frame of this concept, in the present work a comparison between two cooling systems for a specific three-floor building, with and without solar concentration, is performed. The first is a conventional system which consists of evacuated tube collectors feeding a single-effect absorption chiller. On the other hand, a Fresnel reflective solar concentrating system, integrated on the building façade, is coupled to a double-effect absorption chiller. The results show an important reduction of the solar collectors absorber area in the concentrating system compared with the standard solar thermal installation. However, the solar concentrating system requires a large aperture area. In addition, the rejected heat in the double-effect chiller is lower, implying that the investment and operation costs of the solar concentrating cooling system can be reduced significantly.  相似文献   

6.
How efficiently can solar radiation realistically be converted into cooling power? With recent advances in the solar and chiller fields, net coefficients of performance (COPs) of 100% and above should be attainable (i.e. 1 kW of incident solar radiation yielding 1 kW or more of cooling power) with existing technologies. The performance leap, relative to current state-of-the-art solar cooling systems, stems from the introduction of solar fiber-optic mini-dish systems that can deliver high-temperature heat at high solar-to-thermal conversion efficiencies. Driving efficient commercially-available double-stage absorption chillers, solar mini-dish systems should be able to realize net COPs of around 1.0. A further boost in net COP to around 1.4 can be achieved by modifying the conventional scheme to a thermodynamic cascade that takes maximal advantage of high-temperature input heat. The cascade comprises a solar-fired gas micro-turbine producing electricity that drives a mechanical chiller, with turbine heat rejection running an absorption chiller. An additional virtue is that the energy of concentrated sunlight can be stored compactly as ice produced at a retrofitted evaporator of the mechanical chiller. The compactness and modularity of solar mini-dish systems opens the possibility for small-scale ultra-high-performance solar cooling systems.  相似文献   

7.
Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature.  相似文献   

8.
Solar thermal driven cooling systems for residential applications are a promising alternative to electric compression chillers, although its market introduction still represents a challenge, mainly due to the higher investment costs. The most common system configuration is an absorption chiller driven by a solar thermal system, backed up by a secondary heating source, normally a gas boiler. Heat storage in the primary (solar) circuit is mandatory to stabilize and extend the operation of the chiller, whereas a cold storage tank is not so common.This paper deals with the selection of the most suitable configuration for residential cooling systems with solar energy. In Spain, where cooling needs are usually higher than heating needs, the interest of a reversible heat pump as auxiliary system and a secondary cooling storage are analyzed.A complete TRNSYS model has been developed to compare a configuration with just hot storage (of typical capacity 40 L/m2 of solar collector surface) and a configuration with both, hot and cool storages. The most suitable configuration is very sensible to the solar collector area. As the collector area increases, the advantages of a cool storage vanish. Increasing the collector area tends to increase the temperature of the hot storage, leading to higher thermal losses in both the collector and the tank. When the storage volume is concentrated in one tank, these effects are mitigated. The effect of other variables on the optimal configuration are also analyzed: collector efficiency curve, COP of the absorption chiller, storage size, and temperature set-points of the chillers.  相似文献   

9.
Air conditioning machines in Kuwait consume more than 75% of electric energy generated at peak load time. It is in the national interest of Kuwait to decelerate the continuous increase of peak electric power demand. One way to do this is to install for new complexes or high-rise apartments buildings distributed utilities (isolated small power plants), mainly for air conditioning A/C systems. Fuel cells are among the alternatives considered for distributed utilities.This paper discusses the use of commercially available phosphoric acid fuel cell PAFC, known as ONSI P25 to operate air conditioning systems for big buildings in Kuwait.The proposed fuel cell, which is usually delivered with built-in heat exchanger for hot water, is operated by natural gas and uses a propylene glycol-water loop to recover thermal energy. The PAFC has 200 kW nominal electric power capacity, and produces thermal energy of 105 kW thermal energy at 120 °C, and 100 kW at 60 °C.The performance characteristics for the proposed fuel cell are very well documented. In the present study, it is suggested that the fuel cell operates combined mechanical vapor compression and absorption water chillers to utilize the fuel cell full output of electric power and waste heat. Also, to meet the required A/C cooling capacity system by the limited fuel cell power output, it is proposed to use cold storage technique. This allows fuel cell power output to supply the needed energy for average as well as peak A/C system capacity.  相似文献   

10.
For absorption cooling systems to operate and produce their cooling effects they need both thermal and electrical energy, while vapor compression systems need electrical energy only. When operating on solar energy the absorption system may receive all its thermal energy needs from solar sources while its electrical needs (parasitic power) are to be supplied from conventional sources. In order to conduct a fair comparison between the two cooling systems, it is proposed to supply both systems with equal amounts of conventional power and to supplement the rest of their needs from solar sources. A solar coefficient of performance, defined as the ratio of the refrigeration effect to the solar radiation input, is introduced and used for comparing some parameters of engineering ane economic importance in both systems. Economic analysis of solar cooling systems indicates that their initial cost is a function of both their design capacities and the number of hours of full load operation required to fulfill the total daily cooling demand. It indicates, also, that the initial cost of both solar cooling systems would break even before the cost of their respective solar conversion devices do.  相似文献   

11.
Producing refrigeration and/or air conditioning from solar energy remains an inviting prospect, given that a typical building’s cooling load peaks within 2 or 3 h of the time of maximum solar irradiation. The attractiveness of “free” cooling obtained from the sun has spawned a wealth of research over the last several decades, as summarized in a number of review articles. Obstacles—especially high initial costs—remain to the widespread commercialization of solar cooling technologies. It is not clear at the present time if thermally driven systems will prove to be more competitive than electrically driven systems. We therefore describe a technical and economic comparison of existing solar cooling approaches, including both thermally and electrically driven. We compare the initial costs of each technology, including projections about future costs of solar electric and solar thermal systems. Additionally we include estimates of the environmental impacts of the key components in each solar cooling system presented. One measure of particular importance for social acceptance of solar cooling technologies is the required “footprint,” or collector area, necessary for a given cooling capacity. We conclude with recommendations for future research and development to stimulate broader acceptance of solar cooling. The projections made show that solar electric cooling will require the lowest capital investment in 2030 due to the high COPs of vapor compression refrigeration and strong cost reduction targets for PV technology.  相似文献   

12.
This paper investigates the amount of electrical power required, on top of thermal energy needs, in order to generate and deliver the cooling effect of solar absorption cooling systems as compared with the electrical power needs of equivalent vapour compression cooling systems. Further, the effects of degraded operating temperatures and partial load conditions on the power cost per unit of cooling effect in both systems are investigated. It is shown that, under unfavourable conditions, power cost in both systems will be equal. This condition is attained when the two equivalent systems operate at about one-third of their design cooling capacity. It is argued that electrical power saving with solar absorption systems would be improved if a multi-unit configuration is used instead of single unit configuration.  相似文献   

13.
Based on solid-vapour intermittent absorption system, DORNIER a German Firm designed and fabricated a solar cooling unit, which utilizes thermal energy supplied by heat pipe vacuum tube solar collectors through thermosyphonic flow of water. The unit of 1.5 kWh/day cooling capacity uses ammonia as a refrigerant and IMPEX material as absorbent and does not have any moving part requiring no auxiliary energy. The IMPEX material (80% SrCl2 and 20% Graphite) has high heat and mass transfer coefficient as well as high absorption capacity. Detailed experiments were performed on a unit in Delhi under real field conditions followed by theoretical analysis. Theoretical maximum overall COP of the unit is 0.143, and it depends upon the climatic conditions. Under field conditions, it was found that if the maximum daytime ambient temperature was 30°C and night time temperature 20°C, it took three sunny days to freeze water in the cooling box. After the second day, the temperature inside the cooling box remained 1°C. The overall COP was found to be 0.081 only. The automatic control valve based on mechanical/thermal principles however has defects and the problem of corrosion of the sealings needs to be solved. In climates where day time temperatures are high (Delhi summer 43°C–47°C during the day, 30°C–35°C during the night) and solar radiation relatively low (4–5 kWh/m2d) because of pollution and sand in the atmosphere, it is most unlikely that pressure in the ammonia circuit can reach values at which ammonia vapours start to condense. The unit, needs to be redesigned for such conditions.  相似文献   

14.
When the solar absorption and vapour compression cooling systems are viewed from the point of view of electrical energy consumption the differences between them can be expressed in terms of electrical energy saving with the former. As such, it is proposed that an economic comparison between photovoltaic-assisted vapour compression and solar absorption cooling systems be conducted, assuming that the former receives an amount of solar electricity equal to the potential electrical energy saving with the latter. The comparison is conducted with particular emphasis on the operational conditions in Kuwait. Analysis has shown that the potential electrical energy saving with a solar absorption cooling system is equal to 16 per cent of its refrigeration generation. The cost of supplying an equal amount of solar electricity is compared with the difference between the life-time costs of a solar absorption system and an equivalent vapour compression system. The economic comparison is conducted on the basis of the difference between the net present values of both systems. Given the current cost estimates and the prevailing climatic conditions in Kuwait it is shown that photovoltaic-assisted vapour compression cooling systems are likely to compete with the solar absorption cooling systems. This is particularly true in such applications where cooling is required for few hours during the day, and as the cost of the photovoltaic system decreases.  相似文献   

15.
Experiments are carried out on a R11 vapour jet refrigeration system (VJRS) to study the influence of ejector configuration and operating conditions on the performance. Eight ejector configurations, formed out of five nozzles and seven diffusers are investigated. The influence of boiler temperature, which represents the solar energy collection temperature, and that of evaporating temperature, which denotes the cooling load temperature, are studied. Overall COPs in the range of 0.08-0.33 and evaporating temperatures in the range of −3–18°C are obtained for boiler temperatures from 75 to 85°C. Ejector configuration has significant influence in deciding the operating range.  相似文献   

16.
Solar energy is an alternative energy source for cooling systems where electricity is demand or expensive. Many solar assisted cooling systems have been installed in different countries for domestic purpose. Many researches are going on to achieve economical and efficient thermal systems when compared with conventional systems. This paper reviews the past efforts of solar assisted-single effect vapour absorption cooling system using LiBr–H2O mixture for residential buildings. Solar assisted single-effect absorption cooling systems were capable of working in the driving temperature range of 70–100 °C. In this system LiBr–H2O are the major working pairs and has a higher COP than any other working fluids. Besides the review of the past theoretical and experimental investigations of solar single effect absorption cooling systems, some new ideas were introduced to minimize the capital and operational cost, to reduce heat loss from generator and thus to increase COP to get effective cooling.  相似文献   

17.
The results of the theoretical thermodynamic analysis and the dynamic behaviour of the solar heating system of a thermochemical refrigerator, which operates on a heterogeneous solid–gas reaction between barium chloride and ammonia, are presented in this work. The thermodynamic analysis of the barium chloride–ammonia system shows that after energy and mass balance, the global efficiency coefficient (COP) varies very little. The theoretical relative low temperatures of dissociation in this system which are between 50°C and 60°C need simple heating systems such as flat plate collectors are needed, with an advantage over traditional liquid/vapour absorption systems. A simulation of the annual dynamic behaviour of the solar heating system for the operation of a solid-gas reactor is also presented. For an ice production specific cooling load, calculations are made of the different solar fractions of different areas of solar caption as well as the monthly variations of the efficiencies of the refrigeration systems.  相似文献   

18.
A solar ejector cooling system using refrigerant R134a in the Athens area   总被引:2,自引:0,他引:2  
This paper describes the performance of an ejector cooling system driven by solar energy and R134a as working fluid. The system operating in conjunction with intermediate temperature solar collector in Athens, is predicted along the 5 months (May–September). The operation of the system and the related thermodynamics are simulated by suitable computer codes and the required local climatologically data are determined by statistical processing over a considerable number of years. It was fount that the COP of ejector cooling system varied from 0.035 to 0.199 when the operation conditions were: generator temperature (82–92 °C), condenser temperature (32–40 °C) and evaporator temperature (−10–0 °C). For solar cooling application the COP of overall system varied from 0.014 to 0.101 with the same operation conditions and total solar radiation (536–838 W/m2) in July.  相似文献   

19.
Absorption thermal systems are attractive for using waste heat energy from industrial processes and renewable energy such as geothermal energy, solar energy, etc. The Absorption Heat Transformer (AHT) is a promising system for recovering low-level waste heat. The thermal processes in the absorption system release a large amount of heat to the environment. This heat is evolved considerably at temperature, the ambient temperature results in a major irreversible loss in the absorption system components. Exergy analysis emphasises that both losses and irreversibility have an impact on system performance. Therefore, evaluating of the AHT in exergy basis is a much more suitable approach. In this study, a mathematical model of AHTs operating with the aqua/ammonia was developed to simulate the performance of these systems coupled to a solar pond in order to increase the temperature of the useful heat produced by solar ponds. A heat source at temperatures not higher than 100 °C was used to simulate the heat input to an AHT from a solar pond. In this paper, exergy analysis of the AHT were performed and effects of exergy losses of the system components on performance of the AHT used to increase solar pond’s temperature were investigated. The maximum upgrading of solar pond’s temperature by the AHT, is obtained at 51.5 °C and gross temperature lift at 93.5 °C with coefficients of performance of about 0.4. The maximum temperature of the useful heat produced by the AHT was ˜150 °C. As a result, determining of exergy losses for the system components show that the absorber and the generator need to be improved thermally. If the exergy losses are reduced, use of the AHT to increase the temperature of the heat used from solar ponds will be more feasable.  相似文献   

20.
Mankind is facing an escalating threat of global warming and there is increasing evidence that this is due to human activity and increased emissions of carbon dioxide. Converting from vapour compression chillers to absorption chillers in a combined heat and power (CHP) system is a measure towards sustainability as electricity consumption is replaced with electricity generation. This electricity produced in Swedish CHP-system will substitute marginally produced electricity and as result lower global emissions of carbon dioxide. The use of absorption chillers is limited in Sweden but the conditions are in fact most favourable. Rising demand of cooling and increasing electricity prices in combination with a surplus of heat during the summer in CHP system makes heat driven cooling extremely interesting in Sweden. In this paper we analyse the most cost-effective technology for cooling by comparing vapour compression chillers with heat driven absorption cooling for a local energy utility with a district cooling network and for industries in a Swedish municipality with CHP. Whilst this case is necessarily local in scope, the results have global relevance showing that when considering higher European electricity prices, and when natural gas is introduced, absorption cooling is the most cost-effective solution for both industries and for the energy supplier. This will result in a resource effective energy system with a possibility to reduce global emissions of CO2 with 80%, a 300% lower system cost, and a 170% reduction of the cost of producing cooling due to revenues from electricity production. The results also show that, with these prerequisites, a decrease in COP of the absorption chillers will not have a negative impact on the cost-effectiveness of the system, due to increased electricity production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号