首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
旨在探讨等通道转角挤压(equal-channel-angular-pressed,ECAP)对生物医用Mg-3Zn-0.2Ca合金的显微组织以及腐蚀行为的影响。对铸态Mg-3Zn-0.2Ca合金进行了1,2,4道次的剪切挤压变形。采用光学显微组织观察、X射线反射法、电化学等手段研究了挤压道次对镁合金显微组织、织构以及腐蚀行为的影响,也特别关注了ECAP对试样的不同截面方向的显微组织演变以及模拟体液(simulatedbodyfluid,SBF)电化学腐蚀行为的影响。结果表明:ECAP变形后铸态Mg-3Zn-0.2Ca镁合金晶粒逐渐细化,变形后镁合金呈现出与挤压方向呈一定角度的002面剪切织构;随着挤压道次增加,合金的耐蚀性先增加后降低。等通道转角挤压对合金耐蚀性的影响是晶粒尺寸、晶体缺陷和织构变化的综合效果;ECAP变形后合金不同截面方向呈现不同的耐蚀性,垂直于挤压方向截面的耐蚀性优于另2个方向截面的耐蚀性。  相似文献   

2.
采用OM、SEM、XRD对铸态和等通道角挤压(ECAP)变形后Mg-4.5Zn-1Ca(wt%)合金的微观组织进行了表征。通过电化学工作站和浸泡法评估了ECAP变形前后合金在模拟体液(SBF)中的腐蚀性能。结果表明,铸态Mg-4.5Zn-1Ca合金显微组织由α-Mg基体及分布在晶界处和晶粒内的Ca2Mg6Zn3相组成,平均晶粒尺寸为86μm。经ECAP变形后,合金的晶粒尺寸得到显著细化,经6道次ECAP变形后的平均晶粒尺寸为5μm。随着ECAP变形道次的增加,第二相在镁基体中的分布更加均匀、弥散。ECAP变形后合金更容易发生腐蚀,挤压道次越多,合金的自腐蚀电位越负,自腐蚀电流越大,即耐蚀性越差。经6道次ECAP变形后合金的自腐蚀电位最负(-1.42 V),自腐蚀电流最大(407.38μA/cm~2),耐蚀性最差。  相似文献   

3.
研究了变形温度对挤压态Mg-2.2Zn-1Mn-0.5Ca合金微观组织、力学性能和生物降解性能的影响。结果表明,Mg-2.2Zn-1Mn-0.5Ca合金在280℃变形时发生完全动态再结晶,并且随着挤压温度的升高,合金的再结晶晶粒明显长大,力学性能降低;同时,随着挤压温度的升高,Mg-2.2Zn-1Mn-0.5Ca合金的位错密度升高,从而使其生物降解性能降低。  相似文献   

4.
生物医用Mg-3Zn-0.2Ca合金的显微组织,力学性能,腐蚀行为通过光学显微镜,扫描电镜,力学测试以及模拟体液浸泡手段进行了研究。X射线衍射结果表明该合金的主要第二相为Mg7Zn3, Mg2Zn3, 和Mg4Zn7的金属间化合物相。经过56:1挤压比后的挤压态Mg-3Zn-0.2Ca合金的晶粒尺寸平均为2.5um,相比铸态的119.1um下降了47.6倍。屈服强度,抗拉强度以及延伸率分别为205MPa, 336MPa 和17.85%。挤压态合金的耐蚀性也明显优于铸态合金,其原因主要为晶粒细化。本文设计的新型生物医用Mg-3Zn-0.2Ca合金呈现出良好的综合力学性能以及耐蚀性。  相似文献   

5.
针对生物医用Mg-3Zn-0.2Ca的显微组织、力学性能以及生物腐蚀行为,采用X射线衍射(XRD)、光学显微镜(OM)、扫描电镜(SEM)、拉伸实验机、电化学以及浸泡测试方法进行了研究。XRD结果表明Mg-3Zn-0.2Ca合金中的第二相主要为Mg_7Zn_3,Mg_2Zn_3,Mg_4Zn_7等金属间化合物相。相比于铸态,经过56:1挤压比变形后的Mg-3Zn-0.2Ca合金晶粒明显细化,平均晶粒尺寸从119.1μm降到2.5μm,降低了47.6倍。挤压态Mg-3Zn-0.2Ca合金的屈服强度(0.2%TYS)、抗拉强度以及延伸率分别为205,336 MPa和17.85%,电化学以及浸泡测试表明挤压态合金的耐蚀性明显优于铸态Mg-3Zn-0.2Ca合金,其主要归因于晶粒细化。新设计的生物医用Mg-3Zn-0.2Ca合金呈现出了良好的综合力学性能以及生物耐蚀性。  相似文献   

6.
等通道转角挤压Mg-1Zn-2Nd合金的力学性能   总被引:2,自引:0,他引:2  
试验研究了经过不同道次和路径等通道转角挤压的Mg-1Zn-2Nd合金的硬度及其在不同应变速率和试验温度下的力学性能,观察分析了等通道转角挤压Mg-1Zn-2Nd合金的拉伸断口形貌。结果表明,等通道转角挤压Mg-1Zn-2Nd合金在不同试验温度下的伸长率和屈服强度与挤压道次和路径以及所采用的应变速率密切相关;而且经过不同道次和路径等通道转角挤压的Mg-1Zn-2Nd合金在拉伸加载条件下呈现典型的韧性断裂特征,采用4道次路径C等通道转角挤压的Mg-Zn-Nd合金在300℃时的伸长率最大为381.8%。  相似文献   

7.
研究了等通道转角挤压 (ECAP) 工艺处理对Zn-22Al合金耐腐蚀性能的影响,考察了显微组织演变对Zn-22Al合金在3.5% (质量分数) NaCl溶液中的失重及电化学腐蚀行为的影响。结果表明:相比铸态Zn-22Al合金,经过ECAP处理后的试样组织明显细化,晶粒尺寸均匀。晶粒细化导致晶界大量增加及应力增大,试样表面缺陷增多,富铝相被优先腐蚀后,导致被富铝相包围的富锌相脱落,腐蚀速率加快,腐蚀失重随着挤压道次的增加而增加。电化学测试结果表明,随着挤压道次的增加,Zn-22Al合金腐蚀电流密度逐渐增加,腐蚀电位逐渐下降,合金的耐腐蚀性能随挤压道次的增加而逐渐降低。  相似文献   

8.
研究了挤压态Mg-4.0Zn-0.2Ca合金的体外降解和细胞毒性,通过MTT法用L929细胞检测挤压态Mg-4.0Zn-0.2Ca合金的细胞毒性。研究结果表明:Zn和Ca元素能够显著提高挤压态Mg-4.0Zn-0.2Ca合金在模拟体液中的抗腐蚀能力,减慢降解率;挤压态Mg-4.0Zn-0.2Ca合金与细胞的相容性良好,可用于骨种植。  相似文献   

9.
通过光学显微镜和扫描电子显微镜研究了Mg-6Zn-x Gd(x=0~4)合金的挤压态组织,测试了其拉伸力学性能和耐蚀性能。结果表明:随着Gd含量的增加,挤压态组织明显细化,平均晶粒尺寸从Mg-6Zn合金的12mm逐渐减至Mg-6Zn-3.41Gd合金的2mm;挤压态拉伸力学性能明显提高,抗拉强度σ_b和屈服强度σ_(0.2)分别逐渐提高至Mg-6Zn-3.41Gd合金的350 MPa和325 MPa,延伸率δ先降低后提高,且均不低于10%。挤压态Mg-6Zn合金的腐蚀速率较慢,为典型的局部腐蚀;添加少量Gd(质量分数0.66%)后,合金的腐蚀速率稍增大,但腐蚀变得更均匀,朝着均匀腐蚀的方式发展;添加较多量Gd(1.66%和3.41%)后,合金的耐蚀性能急剧恶化。  相似文献   

10.
张忠明  张俊  马莹  王婷  徐春杰 《铸造技术》2012,33(3):257-260
采用金属型铸造制备Mg-1Mn-1Zn(wt%)三元合金,并将其挤压成棒材.利用光学显微镜、扫描电子显微镜、浸泡试验法等研究了Mg-1Mn-Zn合金的微观组织及其在0.9%NaCl溶液中的腐蚀行为.结果表明,Mg-1Mn-1Zn合金室温组织由树枝状的α-Mg相、非平衡共晶MgZn化合物相和脱溶析出的α-Mn相构成.热挤压使等轴晶粒沿挤压方向被拉长,呈现纤维状组织.Mg-1Mn-1Zn合金的平均腐蚀速率随时间增加逐渐降低.经过264 h浸泡后,挤压态Mg-1Mn-1Zn合金的平均腐蚀速率为0.44 mm/a,比铸态合金的低26.7%.  相似文献   

11.
研究了挤压温度对挤压态Mg-2Zn-1Y-0.5Zr生物可降解镁合金动态再结晶、织构和拉伸性能的影响,基于显微组织和腐蚀形态阐述了挤压态合金在模拟体液中的腐蚀机理。结果表明,在440 ℃(E440)下挤压的合金出现双峰结构,具有粗大的未再结晶(unDRXed)晶粒和细小的再结晶(DRXed)晶粒。未再结晶区域的变形晶粒对织构强度的影响最大。460 ℃的挤压合金(E460)具有均匀的再结晶晶粒,晶粒细化后拉伸性能显著改善。同时,均匀的再结晶晶粒会弱化织构强度。E460的样品表现出最佳耐腐蚀性,腐蚀速率为0.669±0.017 mm·a-1。  相似文献   

12.
《铸造技术》2016,(5):988-991
采用等通道转角挤压变形工艺,在573 K下以Bc路径对Mg-6Zn-2Si镁合金进行4道次和8道次挤压细化合金晶粒来提高其力学性能,同时对合金室温拉伸断口进行分析,并阐述了等通道挤压改善实验合金微观组织和力学性能的机理。结果表明:经4道次挤压后晶粒由310μm细化到13μm,Mg_2Si相最大约60μm,细化为细小颗粒状约7μm,α-Mg基体与Mg Zn相均得到显著细化,屈服强度提高180%,伸长率提高140%,抗拉强度提高75%。与4道次相比,经8道次挤压后微观组织无明显变化,屈服强度有所提高,抗拉强度和伸长率变化不大。合金的室温拉伸断口由铸态合金的脆性断口过渡为韧性断口,并且韧窝加深,分布更均匀。  相似文献   

13.
本文通过光学显微镜、拉伸试验机对比研究了Ce、Cu元素对Mg-1.5Zn-0.2Mn合金组织和力学性能的影响。研究结果表明,Cu、Ce元素对铸态Mg-1.5Zn-0.2Mn合金晶粒细化效果并不明显,但经350℃热变形后,能显著细化挤压态Mg-1.5Zn-0.2Mn合金的晶粒组织,其中Ce细化晶粒的效果更加明显,而且Ce能够抑制合金的动态再结晶。此外,Cu、Ce元素的添加均能提高Mg-1.5Zn-0.2Mn合金沿ED和TD方向的屈服强度和抗拉强度,其中Ce元素提高幅度更大,Mg-1.5Zn-0.2Mn-0.2Ce合金ED、TD方向屈服强度分别为185 MPa和162 MPa。与此同时,这两种元素还可以改善Mg-1.5Zn-0.2Mn合金板材强度的各向异性,其中Cu元素的改善效果更明显。  相似文献   

14.
利用金相显微镜、扫描电镜及透射电镜等测试手段研究了挤压温度对固溶态Mg-2.0Zn-0.5Zr-3.0Gd镁合金显微组织的影响。同时,采用浸泡实验和电化学测试等方法研究了合金在模拟体液中的腐蚀行为。结果表明:挤压态合金主要由大的变形晶粒和动态再结晶晶粒组成,析出相由纳米级的棒状(Mg, Zn)3Gd相和颗粒状的Mg2Zn11相组成。挤压温度在340~360 ℃时,合金中动态再结晶晶粒的体积分数随着挤压温度的升高而增加,腐蚀速率随着挤压温度的升高而降低。当挤压温度为360 ℃时,合金发了完全动态再结晶,具有较好的耐腐蚀性,静态腐蚀速率为0.527 mm/y,腐蚀形式为均匀腐蚀。当温度升高至380 ℃时,部分动态再结晶晶粒发生异常长大现象,导致腐蚀速率随着挤压温度的升高而升高。  相似文献   

15.
为调控心血管支架用可降解镁合金的屈强比,对具有高屈强比的挤压态生物镁合金Mg-3.0Nd-1.0Ag-0.2Zn-0.4Zr(NQZ310K)进行了固溶处理,研究了固溶温度对合金显微组织、力学性能和腐蚀性能的影响。结果表明:随着固溶处理温度的提高,晶粒逐渐长大,屈服强度降低,而抗拉强度仍然保持较高水平,屈强比明显降低,加工硬化明显;与挤压态的腐蚀性能相比,固溶处理态合金在模拟体液中的腐蚀速率随固溶温度的升高而逐渐加快,腐蚀方式由均匀腐蚀转变为点蚀。  相似文献   

16.
以Mg-Mn合金为基体材料,通过Y、Nd稀土元素合金化的方法,制备了新型Mg-Mn-RE挤压变形镁合金.采用扫描电镜、透射电镜、X射线衍射仪等实验设备,系统地研究了Mg-Mn-RE挤压镁合金的相组成、微观组织、常规性能;采用交流阻抗谱研究了Mg-Mn-RE挤压镁合金的腐蚀机理.铸态Mg-1Mn-2Y-1Nd合金的显微组织主要由平均晶粒尺寸为410~360 μm的α-Mg晶粒组成.随着Nd含量的增加,铸态Mg-1Mn-2Y-2Nd合金的显微组织明显细化并且包含了Mg12Nd相和Mg24Y5相.在热挤压过程中,与Mg-1Mn-2Y-1Nd合金相比,Mg-2Y-1Mn-2Nd合金中发生了明显的再结晶,再结晶晶粒尺寸变大,同时形成粗大的Mg12Nd相和细小的Mg24Y5相.电化学交流阻抗谱结果表明,Nd的加入使Mg-Mn系合金的抗腐蚀性能降低.  相似文献   

17.
以Mg-Mn合金为基体材料,通过Y、Nd稀土元素合金化的方法,制备了新型Mg-Mn-RE挤压变形镁合金。采用扫描电镜、透射电镜、X射线衍射仪等实验设备,系统地研究了Mg-Mn-RE挤压镁合金的相组成、微观组织、常规性能;采用交流阻抗谱研究了Mg-Mn-RE挤压镁合金的腐蚀机理。铸态Mg-1Mn-2Y-1Nd合金的显微组织主要由平均晶粒尺寸为410~360μm的α-Mg晶粒组成。随着Nd含量的增加,铸态Mg-1Mn-2Y-2Nd合金的显微组织明显细化并且包含了Mg12Nd相和Mg24Y5相。在热挤压过程中,与Mg-1Mn-2Y-1Nd合金相比,Mg-2Y-1Mn-2Nd合金中发生了明显的再结晶,再结晶晶粒尺寸变大,同时形成粗大的Mg12Nd相和细小的Mg24Y5相。电化学交流阻抗谱结果表明,Nd的加入使Mg-Mn系合金的抗腐蚀性能降低。  相似文献   

18.
对Mg-(4-x)Nd-xGd-0.3Sr-0.2Zn-0.4Zr(质量分数,%,x=0, 1和3)镁合金进行了固溶处理。采用扫描电镜、能谱分析仪和X射线衍射仪研究了合金的显微组织与物相。利用失重和析氢法测试了合金在模拟体液中的腐蚀速率,并观察了合金的腐蚀形貌。结果表明,含1%Gd的合金晶粒最细小,且第二相较为连续地分布在基体周围,腐蚀速率也最低;而含3%Gd的合金晶粒最粗大,腐蚀速率最快。3种合金的腐蚀形貌较为均匀,是理想的生物可降解材料。  相似文献   

19.
采用金属型铸造法制备Mg-4Zn-1Y(wt%)合金,并在450℃下挤压成棒材。利用光学显微镜、扫描电镜、X射线衍射、浸泡试验及电化学试验对铸态和挤压态Mg-4Zn-1Y微观组织、相组成及其在3.5%NaCl溶液中的腐蚀行为进行研究。结果表明:铸态合金的平均晶粒尺寸为50~60μm,而挤压态合金的平均晶粒尺寸降低到4~5μm。热挤压可明显提高合金的耐腐蚀性,且挤压态合金纵截面耐腐蚀性要稍优于横截面。在3.5%NaCl溶液中,挤压态合金纵截面的腐蚀速率仅为铸态合金腐蚀速率的1/2。  相似文献   

20.
利用OM、SEM、EDS、XRD及DSC等测试方法研究了复合添加Yb和Ca对Mg-6Zn合金组织的影响。结果表明:Mg-6Zn-0.2Ca合金铸态组织主要由α-Mg、Mg7Zn3、MgZn2及MgZn等相组成,合金组织有被Ca细化趋势;复合添加微量Ca和Yb后,枝晶组织呈"花瓣"状,并随Yb含量增加,"花瓣"状组织明显增多,其晶粒稍有细化;经固溶处理(T4)后,Mg-6Zn-0.2Ca-xYb(x=0、1、1.5)合金组织由铸态时枝晶转变成等轴晶,与Mg-6Zn-0.2Ca合金相比,含Yb合金晶粒有明显粗化现象;Mg-6Zn-0.2Ca-1.5Yb合金中含有稳定的三元Mg-Zn-Yb化合物,初步认定该化合物中Zn、Yb的原子比在4~6之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号