首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
中波和长波红外双波段消热差光学系统设计   总被引:2,自引:0,他引:2       下载免费PDF全文
为了有效提高目标的红外探测与识别能力,设计了能同时对高温和常温目标成像的中波和长波红外双波段消热差光学系统。所设计的光学系统采用柯克型结构,视场、有效焦距和相对孔径分别为5.5°×4.4°、100 mm和F/2,工作波段覆盖中波红外(波长3~5μm)和长波红外(8~12μm)。通过采用光学被动消热差方法,优化设计的镜头可工作于-60~80℃的环境温度,奈奎斯特频率处的调制传递函数(MTF)值变化小于0.05。该镜头使用Ge、ZnSe和ZnS 3种红外材料,具有后工作距大、100%冷光阑效率等特点。  相似文献   

2.
依据光学被动消热差理论,利用硫系玻璃的热稳定性、长波红外透过特性等优点,对长波非制冷双视场光学系统进行了无热化研究,设计了一个大相对孔径、3 倍变焦的双视场长波红外光学系统。其具体参数为:F/# 为1,焦距为50/150 mm,总长240 mm,采用640480 的焦平面探测器,像元大小为17 m17 m,工作波段8~12 m,系统使用了三种长波红外材料:Ge、ZnS、IRG201。在-40~60℃下,其长短焦处像质均接近衍射极限。  相似文献   

3.
史衍丽 《红外技术》2011,33(11):621-624,638
以多色、大面阵、高性能、低成本为特征的第三代红外探测器是当前红外探测器的发展方向及目标.InAs/GaInSb Ⅱ类超晶格探测器因为独特的断代能带结构以及自身存在的材料和器件优势,在大面阵长波红外探测器、高温中波红外探测器、中波双色探测器以及甚长波红外探测器领域显示出优异的器件性能和技术成熟性,成为第三代红外探测器技术...  相似文献   

4.
吴海清  田海霞  崔莉 《红外》2015,36(8):1-4
研究了大视场大相对孔径长波红外机械无热化光学系统的设计, 设计了8~12 μm波段内F数为0.8、温度在-40~60℃范 围内无热化的光学系统。结果表明,该系统结构简单,像质好,在空间频率20 lp/mm处的 光学传递函数值大于0.5。  相似文献   

5.
吴海清  王朋 《红外》2020,41(2):1-6
作为未来红外探测器的主流发展方向之一,大面阵红外探测器近年来的发展非常迅速。它的主要用途是在天体物理学、地球科学和行星科学等领域,并且是未来用于地球天气、气候描述以及空气污染检测的一个主要工具。随着面阵规格和材料尺寸的增加,器件的制作难度也越来越高。重点介绍了目前国际上最常见的制冷型红外探测器——HgCdTe红外探测器和InSb红外探测器。结合国内外的一些文献,总结了两类探测器的大面阵技术发展状态,并且重点介绍了当前世界上红外探测研究处于领先地位的主要公司的产品及技术水平。最后指出了大面阵红外探测器目前存在的主要问题。  相似文献   

6.
介绍了大面阵偏振长波量子阱红外焦平面探测器组件的研制进展。在640512规模20 m中心距面阵上,偏振焦平面采用了22子单元设计,子单元中每个像元分别刻蚀0、90、45以及135方向的一维线性光栅,来获得入射光不同偏振角度的信息。突破了长波量子阱材料外延和器件制备等关键技术,制备出面阵探测器芯片,实现了偏振长波红外探测的单片集成,配上杜瓦和制冷机,研制出噪声等效温差优于30 mK的长波偏振640512量子阱探测器组件。  相似文献   

7.
无调焦非制冷红外光学系统的无热化设计   总被引:1,自引:1,他引:0  
论述了通过景深分析和无热化设计实现无调焦光学系统的原理.基于长波大面阵(640×512)非制冷探测器,设计了同时适应物距变化(15 m~100 m)及温度变化(-55℃~+70℃)的无热红外光学系统,焦距33mm,F数1.3.设计结果表明,该系统在宽温度范围内具有良好的消热差性能,并且完全覆盖目标物距范围,从而实现了无调焦的要求,提高了系统操作性和可靠性.  相似文献   

8.
大视场大相对孔径长波红外扫描光学系统设计   总被引:1,自引:0,他引:1       下载免费PDF全文
采用288×4线阵探测器及二次成像方式设计了一种工作于7.5~10.5μm的大视场大相对孔径长波红外扫描型光学系统,系统凝视视场角为28°×21°,采用摆镜同楔形镜扫描扩展后系统视场角为78°×57°,该系统具有大相对孔径、F数为1.67、高成像质量等特点。由于长波红外可用材料有限,设计中采用锗材料和硒化锌材料校正色差,引入非球面校正系统球差,系统设计结果显示其成像质量接近衍射蓟县,色差矫正良好,在空间频率为20 lp/mm处,调制传递函数(MTF)均在0.3以上,能量集中度大于70%。  相似文献   

9.
为提高红外光学系统的目标探测识别能力,增强其温度适应能力,在分析红外材料在中波和长波红外波段的色差与热差特性的基础上,根据系统光焦度分配、双波段轴向消色差和双波段消热差等要求,利用红外色差图合理选择光学材料组合,设计了一款中波和长波红外双波段消热差系统,系统采用非制冷探测器,工作波段为3~5 m和8~12 m,由4片透镜组成,焦距为50 mm,相对空间为1:1.25,全视场角为14,总长67.9 mm。设计结果表明:在温度范围-50~60 ℃范围内,在空间频率为17 lp/mm处,系统在中波和长波波段的MTF值均大于0.4,表明系统有较强的温度适应性。  相似文献   

10.
王鑫  周立庆  谭振 《红外》2019,40(12):1-9
作为未来红外探测器的主流发展方向之一,大面阵红外探测器近年来的发展非常迅速,主要用于天体物理学、地球科学和行星科学等领域,并且是未来地球天气与气候描述、空气污染检测方面的一种主要工具。随着面阵规格和材料尺寸的增加,器件的制作难度也越来越大。重点介绍了目前国际上最常见的两种制冷型红外探测器——HgCdTe和InSb红外探测器。结合国内外的一些文献,总结了这两种红外探测器的大面阵技术的发展状况,并重点介绍了当前全球行业领先的几家红外探测器厂商的相关产品及技术水平。最后指出了大面阵红外探测器研制目前存在的主要问题。  相似文献   

11.
陈潇 《红外技术》2021,43(12):1183-1187
随环境温度变化红外镜头会产生热离焦现象,一般定焦红外光学系统可通过多种红外材料组合或引入衍射面来实现光学被动式无热化设计,而变焦红外光学系统大多是通过移动透镜组来实现机械主动式无热化设计。文中根据光学变焦原理和光学被动式无热化原理,提出一种变焦光学被动式无热化设计方法,并采用该方法设计了一种大相对孔径双视场无热化长波红外光学系统。该系统焦距为25/50 mm(变倍比为2:1),工作波段为8~12 μm,F数为0.9,可匹配640×512,像元为17 μm×17 μm的非制冷红外焦平面阵列探测器。光学设计中采用3种红外光学材料(硫系玻璃HWS6、硒化锌和锗)组合,并引入3个偶次非球面,实现变焦无热化设计。设计结果表明:该系统在宽温度范围内具有良好的成像效果和温度自适应性,在空间频率30 lp/mm处,-50℃~80℃温度范围内各视场MTF均大于0.3。该红外光学系统结构简单、工艺良好,在红外车载领域有着广泛应用前景。  相似文献   

12.
设计了一种薄膜衍射消热差红外光学系统。此光学系统口径为200 mm,焦距为200 mm,相对孔径为1,全视场角为3°,工作波段为10.7~10.9 μm。该系统采用薄膜衍射镜作为主镜,厚度为微米量级,具有口径大、重量轻的优点,解决了现有红外光学系统重量和口径无法调和的矛盾。利用含有衍射面的折衍混合透镜进行校正主镜带来的强色散,有效解决薄膜衍射主镜成像视场小、谱段范围窄等问题。采用薄膜衍射主镜、折衍混合透镜,很好地利用了衍射面良好的消热差特性,再结合透镜材料的选择,对光学系统消热差起到了良好的作用,并且,衍射面的使用为系统设计优化过程中增加了自由度。薄膜衍射消热差红外光学系统重量轻、成像质量好、消热差性能优良,在红外遥感成像探测领域具有良好的应用前景。  相似文献   

13.
采用非制冷红外探测器的折衍混合物镜设计   总被引:2,自引:0,他引:2  
针对长波320×240元非制冷焦平面阵列探测器,设计了折射/衍射混合大相对孔径红外镜头,工作波段8~12舯,焦距为90mm,F数为1,视场为10°.系统为三片式结构:利用二元光学元件具有大的负向色散特性,在第4面引入衍射面,有效地消除了色差,简化了系统结构并减轻了质量,并用ZEMAX光学设计软件进行了像质评价.结果表明,系统成像质量良好,各项指标均满足使用要求.  相似文献   

14.
唐晗  郑万祥  曾兴容  杨丹  周春芬  曹凌  徐曼  李洪兵  杨开宇 《红外与激光工程》2023,52(4):20220607-1-20220607-11
随着红外技术的快速发展,SWaP-C (尺寸小、质量轻、功耗低、成本低)概念已深入红外热像仪整机设计全过程。在非制冷连续变焦红外热像仪设计中,相对已模块化的非制冷探测器与成像电路、光学系统影响整机包络尺寸、产品质量及价格成本,因此设计一款总长短、质量轻、成本低、性能高的非制冷长波红外连续变焦光学系统将具有广阔的市场前景。非制冷长波红外连续变焦光学因相对孔径大、光学材料种类少等因素存在系统小型化和无热化设计难题,通过采用变F#设计方法约束物镜尺寸;利用三组联动变焦技术平衡像差、压缩系统总长;通过主动补偿的消热差技术使得系统在-40~+60℃温度范围成像质量良好,实现四片透镜构成的非制冷长波红外连续变焦光学系统设计。该系统工作波段为8~12μm,焦距变化范围为20.7~126 mm,对应F#为1.05~1.2,视场变化范围为21°×16.8°~3.5°×2.8°,变倍比为6.0×,最大物镜直径116 mm,光学系统总长180 mm,光学零件总质量418 g。该光学系统具有轻小型、高性能、低成本等SWaP-C特征,将在无人装备平台及手持热像仪设备中得到广泛应用。  相似文献   

15.
郑德忠  孙黎明 《红外》2011,32(11):5-9
为了使红外生命探测仪的光学系统具有更大的探测范围,提出了一种新型红外双视场光学探测系统.该光学系统为变焦距光学系统,它利用轴向移动变焦方式使透镜组实现变倍和温度补偿,简化了机电系统结构.该光学系统的工作波段为8~14μm,焦距为35~140 mm,变倍比为3倍.由于选择锗(Ge)和硒化锌(ZnSe)作为透镜材料,F数≥...  相似文献   

16.
Hou Guozhu  Lv Lijun  Cao Yiqing 《红外与激光工程》2021,50(6):20200505-1-20200505-10
鱼眼镜头系统具有平面对称、超大视场、大孔径成像等特点,使得其设计十分复杂。波像差理论是研究光学系统的重要手段,由于鱼眼镜头系统具有平面对称的成像特性,赛德尔初级像差和基于轴对称光学系统发展的高阶像差理论不再适用于鱼眼镜头系统的像差分析和设计。介绍了六阶波像差理论,包括六阶本征波像差、五阶像差、衍生波像差及孔径光线二阶精度对波像差的影响,给出六阶波像差理论设计鱼眼镜头系统的流程图,应用六阶波像差理论设计鱼眼镜头前光组,由其前光组与后光组像差平衡设计了后光组。最后得到一成像质量良好的鱼眼镜头系统,该镜头的焦距为5.989 mm,视场角为180°,相对孔径为1/3.2。设计结果表明,该鱼眼镜头系统的调制传递函数(MTF)数值在空间频率为60 lp/mm时均不低于0.56,具有较好的成像质量。  相似文献   

17.
司俊杰 《红外与激光工程》2022,51(1):20210811-1-20210811-19
InSb单晶是制备工作于中波红外大气窗口(3~5 μm)光子型探测器的典型光电转换材料,采用该单晶材料所制备的InSb红外探测器以高性能、大规格像元阵列、高稳定性和相对低成本为特点,广泛应用于军用红外系统和高端民用红外系统领域。然而,InSb 红外探测器响应波长范围固定不可调节、响应仅限于短中波红外而对长波红外无响应、相对有限的载流子寿命制约器件高温工作性能等固有特点,限制了该型探测器在工程中的广泛应用。文中系统地介绍了基于InSb材料人们为改进上述不足所开展的新型材料及其光电响应方面的研究结果。这些材料主要包括:采用合金化方法改变InSb组分形成新型多元合金材料、采用量子结构形成新型低维探测材料。对于新型合金材料,介绍了材料的合金相图、带隙与合金组分的关系、带隙的温度关联特性,并给出采用该材料制备器件的典型光电性能;对于量子结构材料,介绍了材料的制备方法、带隙与量子尺寸的关系,以及采用该材料制备原型器件的典型光响应特性。最后,对新型InSb基红外探测材料与器件的发展趋势、关键问题、研究重点进行了探讨。  相似文献   

18.
针对324256非制冷探测器,设计了一个工作波段为8~12 m,有效焦距为9 mm,F数为1.3,视场角为33.2626.28的红外车载镜头。镜头采用了硫系玻璃材料Ge28Sb12Se60制备的两片镜片,结合常规红外材料锗以及硫化锌材料制备其他两片镜片,通过合理分配各个镜片的光焦度达到系统整体无热化设计的效果。利用硫系玻璃易于精密模压制备非球面的特点,仅在一片硫系玻璃镜片上设计了一处非球面。设计结果表明该系统在-40~60 ℃的温度范围内具有良好的消色差/热差性能,且调制传递函数(MTF)接近衍射极限。  相似文献   

19.
陈建发  潘枝峰  王合龙 《红外与激光工程》2020,49(6):20190443-1-20190443-6
超大视场红外光学镜头在军事上主要用于对来袭目标进行告警,相比于常规红外光学系统,其设计具有许多不同的特点。结合实际工程应用,在投影方式、光学构型、像面照度、视场、无热化、评价方式等方面对超大视场红外光学系统设计的特点进行分析。给出了一个具体的设计实例,所用探测器采用1 024×1 024@15 μm制冷型中波红外探测器,光学系统工作波段3.7~4.95 μm,焦距9.6 mm,视场116°,仅采用4片透镜实现无热化设计,不含衍射面,工作温度覆盖范围?55~+70 ℃,镜头结构紧凑,总长度小于70 mm。像质评价结果表明:全视场单个像元角分辨率均匀性95%以上,单个像元能量集中度在75%以上,光学系统边缘视场照度为中心视场照度的90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号