首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.  相似文献   

2.
In this paper,an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case.Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used.The influences of the inter-pulse delay between two pulses on the LIBS signal intensity,electron temperature and density were investigated.It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction.These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.  相似文献   

3.
In this paper,we investigate the time-resolved spectroscopy of collinear femtosecond(fs)and nanosecond(ns)dual-pulse(DP)laser-induced plasmas.A copper target was used as an experimental sample,and the fs laser was considered as the time zero reference point.The inter-pulse delay between fs and ns laser beams was 3 μs.First,we compared the time-resolved peak intensities of Cu(Ⅰ)lines from Cu plasmas induced by fs+ns and ns+fs DP lasers with collinear configuration.The results showed that compared with the ns+fs DP,the fs+ns DP laser-induced Cu plasmas had stronger peak intensities and longer lifetimes.Second,we calculated time-resolved plasma temperatures using the Boltzmann plot with three spectral lines at Cu(Ⅰ)510.55,515.32 and 521.82 nm.In addition,time-resolved electron densities were calculated based on Stark broadening with Cu(Ⅰ)line at 521.82 nm.It was found that compared with ns+fs DP,the plasma temperatures and electron densities of the Cu plasmas induced by fs+ns DP laser were higher.Finally,we observed images of ablation craters under the two experimental conditions and found that the fs+ns DP laser-produced stronger ablation,which corresponded to stronger plasma emission.  相似文献   

4.
《等离子体科学和技术》2016,18(12):1192-1197
In this paper, we present a study on the effect of inter-pulse delay using femtosecond double-pulse laser-induced breakdown spectroscopy in a collinear geometry. The temporal evolution of spectral intensity is performed for the lines of Fe I 423.60 nm, Fe I 425.08 nm and Fe I 427.18 nm. It is found that, by selecting appropriate inter-pulse delay, the signal enhancement can be significantly increased compared with the single-pulse case. A three-fold enhancement in the current experiment is obtained. The plasma temperature and electron density are also investigated based on the theory of Boltzmann plot and Stark broadening. We attribute the main mechanism for emission enhancement to the plasma re-heating effect.  相似文献   

5.
Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable be?cause of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combina?tion of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The proper?ties of the target also played a role in determining the mass ablation enhancement in DP-LIBS con?guration.  相似文献   

6.
In this study,a stand-off and collinear double pulse laser-induced breakdown spectroscopy(DP LIBS) system was designed,and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured.The effect of inter-pulse delay on spectra was studied,and the signal enhancement was observed compared to the single pulse LIBS(SP LIBS).The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS.The calibration curves of Ytterbium(Y) and Zirconium(Zr) were investigated.The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.  相似文献   

7.
The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS. It works under laser-plasma triggered spark discharge mode, and shows its ability to enhance spectral emission intensity. This work uses a femtosecond laser as the light source, since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser, meanwhile, the study on femtosecond LIBS with spark discharge is rare. Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies. The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone. And, the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy. In addition, at low laser energy, there was an obvious delay on the discharge time compared with high laser energy, and the discharge time with positive voltage was different from that with negative voltage.  相似文献   

8.
Spatial confinement can significantly enhance the spectral intensity of laser-induced plasma in air.It is attributed to the compression of plasma plume by the reflected shockwave.In addition,optical emission spectroscopy of laser-induced plasma can also be affected by the distance between lens and sample surface.In order to obtain the optimized spectral intensity,the distance must be considered.In this work,spatially confined laser-induced silicon plasma by using a Nd:YAG nanosecond laser at different distances between lens and sample surface was investigated.The laser energies were 12 mJ,16 mJ,20 mJ,and 24 mJ.All experiments were carried out in an atmospheric environment.The results indicated that the intensity of Si (I) 390.55 nm line firstly rose and then dropped with the increase of lens-to-sample distance.Moreover,the spectral peak intensity with spatial confinement was higher than that without spatial confinement.The enhancement ratio was approximately 2 when laser energy was 24 mJ.  相似文献   

9.
In this paper, we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air. A brass was selected as ablated target of the experiment. The results indicated that spectral emission intensity and plasma temperature showed similar trend for femtosecond and nanosecond lasers, and the two parameters were improved by increasing the sample temperature in both cases. Moreover, the temperature of nanosecond laser-excited plasma was higher compared with that of femtosecond laser-excited plasma, and the increase of the plasma temperature in the case of nanosecond laser was more evident. In addition, there was a significant difference in electron density between femtosecond and nanosecond laser-induced plasmas. The electron density for femtosecond laser decreased with increasing the target temperature, while for nanosecond laser, the electron density was almost unchanged at different sample temperatures.  相似文献   

10.
The effect of an external electric field on laser-generated plasma has been studied. It is observed that the laser-generated plasma can be used for the ignition of a spark in the presence of a low voltage external electric field. An eight-fold emission intensity enhancement in Cu Ⅰ spectral lines are measured as compared to the signal intensity in the absence of an external electric field.The plasma parameters remain the same initially, up to a few microseconds after the generation of plasma, and this feature makes it more interesting for the quantitative analysis of any sample using laser induced breakdown spectroscopy(LIBS). In the presence of an external electric field,fluctuations(contraction and expansion) in the laser-generated plasma are observed which increase the plasma decay time and consequently result in enhanced signal intensity.  相似文献   

11.
We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond pulsed laser with 1064 nm wavelength and 10 ns pulse width was used to ablate silicon to produce plasma. It was confirmed that the increase in the sample's initial temperature could improve spectral line intensity. In addition, when the distance from the target surface to the focal point increased, the intensity firstly rose, and then dropped.The trend of change with distance was more obvious at higher sample temperatures. By observing the distribution of the normalized ratio of Si atomic spectral line intensity and Si ionic spectral line intensity as functions of distance and temperature, the maximum value of normalized ratio appeared at the longer distance as the initial temperature was higher, while the maximum ratio appeared at the shorter distance as the sample temperature was lower.  相似文献   

12.
In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal-and spatial-resolved plasma emission spectra are analyzed. Experimental results show that the copper plasma atomic and ion spectra have been enhanced in the presence of the external magnetic field. In addition, the Cu I 521.82 nm spectral intensity evolution with delay time appears to have a double peak around the delay time of 2 μs, but that of Cu II 507.57 nm has a sharp decrease because of the electron-atom three body recombination process. The plasma temperature with magnetic confinement is lower than that of the case in the absence of magnetic fields. Finally, the spectral enhancement mechanisms of laser induced breakdown spectroscopy with magnetic confinement are analyzed.  相似文献   

13.
In order to optimize the laser ablation performance of a micro-thruster with 1U dimensions, which employs a micro semiconductor laser, the impacts of pulse width and glycidyl azide polymer (GAP) thickness on thrust performance were researched. The results showed that with a GAP thickness of 200 μm, the single-pulse impulse (I) increased gradually with the increase in the laser pulse width from 50 to 800 μs, while the specific impulse (Isp), impulse coupling coefficient (Cm) and ablation efficiency (η) all reached optimal values with a 200 μs pulse width. It is worth noting that the optimal pulse width is identical to the ignition delay time. Both Cm and η peaked with a pulse width of 200 μs, reaching 242.22 μN W−1 and 35.4%, respectively. With the increase in GAP thickness, I and Cm increased gradually. GAP of different thicknesses corresponded to different optimal laser pulse widths. Under a certain laser pulse width, the optimal GAP thickness should be the most vertical thickness of the ablation pit, and the various propulsion performance parameters at this time were also optimal. With the current laser parameters, the optimal GAP thickness was approximately 150 μm, Isp was approximately 322.22 s, and η was approximately 34.94%.  相似文献   

14.
In this study,a laser-assisted pulsed plasma thruster (LA-PPT) with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the unique structure of the thruster,metals can also be used as propellants,and a higher specific impulse is expected.The ablation quality,morphology,and plume distribution of various metals (aluminium alloy,red copper,and carbon steel) with different laser energies were studied experimentally.The ablation morphology and plume distribution of red copper were more uniform,as compared to those of other metals,and the ablation quality was higher,indicating its greater suitability for LA-PPT.The plume generated by nanosecond laser ablation of aluminium alloy expanded faster,which indicated that the response time of the thruster with aluminium alloy as the propellant was shorter.In addition,when the background pressure was 0.005 Pa,an obvious plume splitting phenomenon was observed in the ablation plume of the pulsed laser irradiating aluminium alloy,which may significantly reduce the utilisation rate of the propellant.  相似文献   

15.
The dynamics of transient plasmas generated by high-fluence nanosecond laser ablation has been investigated by means of optical methods (time- and space-resolved emission spectroscopy and fast ICCD imaging). Systematic measurements have been carried out on plasma produced in vacuum (10−8 Torr residual pressure) by Nd:YAG laser (10 ns, 532 nm) irradiation of Aluminum targets. Al neutral atoms and different charge state ions have been monitored through the evolution of corresponding spectral lines. The study evidenced the presence of two different groups of particles, tentatively related to two distinct ejection mechanisms. This behavior has been confirmed by the fast ICCD (20 ns gate) recording of the total optical emission of the plume. The application of the relative line intensity method to the study of the excitation temperature axial profile is equally discussed.  相似文献   

16.
The micro-impulse generated by ablating an aluminum target in double-pulse laser bursts with different interpulse delays was investigated using a torsion pendulum. The plasma plume was simultaneously visualized using high-speed photography to analyze the coupling mechanism of the ablation impulse. The experiment was carried out using a pulsed laser with a pulse width of 8 ns and a wavelength of 1064 nm. The experimental results show that an impulse with an interpulse delay of 60 ns is roughly 60% higher than that with no delay between the two pulses, when the energy of both laser pulses is 50 mJ. Therefore, double-pulse schemes could enhance the ablation impulse under certain conditions. This is because the ablation of the first laser pulse changes the optical properties of the aluminum target surface, increasing the absorptivity. However, the ablation impulse is reduced with a time delay of 20 ns when the energy of both laser pulses is 100 mJ or 150 mJ. It can be concluded that the plasma produced by ablating the aluminum with the first pulse shields the second laser pulse. To summarize, the experimental results show that different delay times in a double-pulse scheme have a significant effect on the ablation impulse. The study provides a reference for the optimization of the parameters when laser ablation propulsion with a double-pulse scheme is applied in the fields of space debris removal, laser ablation thrusters, and so on.  相似文献   

17.
We proposed a theoretical spatio-temporal imaging method, which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model. By using the intensity formula, the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn. Through further image processing such as normalization, determination of minimum intensity, combination and color filtering, a relatively clear species distribution image in the plasma could be obtained. Using the above method, we simulated the plasma ablated from Al–Mg alloy by different laser energies under 1 atm argon, and obtained the theoretical spatio-temporal distributions of Mg I, Mg II, Al I, Al II and Ar I species, which are almost consistent with the experimental results by differential imaging. Compared with the experimental decay time constants, the consistency is higher at low laser energy, indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.  相似文献   

18.
A metal-assisted method is proposed for the evaluation of gases'molecular abundance ratio in fiber-optic laser-induced breakdown spectroscopy(FO-LIBS).This method can reduce the laser ablation energy and make gas composition identification possible.The principle comes from the collision between the detected gases and the plasma produced by the laser ablation of the metal substrate.The interparticle collision in the plasma plume leads to gas molecules dissociating and sparking,which can be used to determine the gas composition.The quantitative relationship between spectral line intensity and molecular abundance ratio was developed over a large molecular abundance ratio range.The influence of laser ablation energy and substrate material on gas quantitative calibration measurement is also analyzed.The proposed metal-assisted method makes the measurement of gases'molecular abundance ratios possible with an FO-LIBS system.  相似文献   

19.
The optimal spectral excitation and acquisition scheme is explored by studying the effect of the lens-to-sample distance (LTSD) on the spatial homogeneity and emission spectra of flat-top laser converging spot induced plasma. The energy distribution characteristics before and after the convergence of the laser beam with quasi flat-top intensity profile used in this study are theoretically simulated and experimentally measured. For an aspheric converging mirror with a focal length of 100 mm, the LTSD (106 mm ≥ LTSD ≥ 96 mm) was changed by raising the stainless-steel sample height. The plasma images acquired by ICCD show that there is air breakdown when the sample is below the focal point, and a ring-like plasma is produced when the sample is above the focal point. When the sample is located near the focal point, the plasma shape resembles a hemisphere. Since the spectral acquisition region is confined to the plasma core and the image contains all the optical information of the plasma, it has a lower relative standard deviation (RSD) than the spectral lines. When the sample surface is slightly higher than the focal plane of the lens, the converging spot has a quasi flat-top distribution, the spatial distribution of the plasma is more uniform, and the spectral signal is more stable. Simultaneously, there is little difference between the RSD of the plasma image and the laser energy. In order to further improve the stability of the spectral signal, it is necessary to expand the spectral acquisition area.  相似文献   

20.
The spectral characteristic of laser-induced plasma in soil was studied in this work, laser-induced breakdown spectroscopy was used to analyze the spectral characteristic of plasma under the condition of different time delays and irradiances. Moreover, the time evolution characteristics of plasma temperature and electron density were discussed. Within the time delay range of 0-5 μs,the spectral intensity of the characteristic lines of Si I: 288.158 nm, Ti I: 336.126 nm, Al I:394.400 nm and Fe I: 438.354 nm of the four main elements in two kinds of national standard soil decayed exponentially with time. The average lifetime of the spectral lines was nearly 1.56 μs. Under the condition of different time delays, the spectral intensity of Pb I: 405.78 nm in soil increased linearly with laser energy. However, the slope between the spectral intensity and laser energy decreased exponentially with the increase in time delay, from 4.91 to 0.99 during 0-5 μs. The plasma temperature was calculated by the Boltzmann plot method and the electron density was obtained by inversion of the full width at half maximum of the spectrum. The plasma temperature decreased from 8900 K to 7800 K and the electron density decreased from 1.5 × 10~(17) cm~(-3) to 7.8 × 10~(16) cm~(-3) in the range of 0-5 μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号