首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
S?V(G)是G的一个顶点集且|S|≥k,其中2≤k≤n.连接S的树T叫作斯坦纳树.两棵斯坦纳树T1和T2称为内部不交的,当且仅当它们满足E(T1)∩E(T2)=?和V(T1)∩V(T2)=S.令κG(S)是G内部不交的斯坦纳树的最大数目,κk(G)=min{κG(S)∶S?V(G),|S|=k}定义为G的广义k-连通度.很显然,当|S|=2时,广义2-连通度κ2(G)就是经典连通度κ(G).因此广义连通度是经典连通度的推广.主要讨论泡序图Bn的广义4-连通度κ4(Bn).得到的结论是当n≥3时,κ4(Bn)=n-2.  相似文献   

2.
令S■V(G)κ.G(S)表示图G中内部不交的S-树T1,T2,…,Tr的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(Ti)∩V(Tj)=S,E(Ti)∩E(Tj)=.定义κk(G)=min{κG(S)|S■V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.完全对换图在网络中是重要的一类Cayley图.该文证明了n-维完全对换图CTn的广义3-连通度是n(n-1)/2-1,也就是说,对于CTn的任意三个点,存在n(n-1)/2-1个连接它们的内部不交的树.  相似文献   

3.
令S?V(G),κ_G(S)表示图G中内部不交的S-树T_1,T_2,…,T_r的最大数目r,使得对任意i,j∈{1,2,…,r}且i≠j,有V(T_i)∩V(T_j)=S,E(T_i)∩E(T_j)=?.定义κ_k(G)=min{κ_G(S)|S?V(G),且|S|=k}为图G的广义k-连通度,其中k是整数,且2≤k≤n.令Sym(n)是在{1,2,…,n}上的对称群,T是Sym(n)的对换集合.G(T)表示点集是{1,2,…,n},边集是{ij|(ij)∈T}的图.若G(T)是一个轮图,则将Cayley图Cay(Sym(n),T)简记为WG_n.主要研究由轮生成的Cayley图WG_n的广义3-连通度,并证明κ_3(WG_n)=2n-3,其中n≥4.  相似文献   

4.
设G是连通图,G的k阶幂图Gk是一个与G具有相同顶点集的图,Gk中的两个顶点相邻当且仅当这两个顶点在G中的距离不大于k.本文研究了路的幂图Pnk的点连通度κ(Pnk)、边连通度λ(Pnk)和限制边连通度λ2(Pnk).得到:当n>k时,κ(Pnk)=λ(Pnk)=k;关于限制边连通度:当2≤n≤k+1时λ2(Pnk)=2n-4,当n>k+1时,λ2(Pnk)=2k-1.  相似文献   

5.
李海英  孙磊 《山东科学》2010,23(4):10-12
给定一个连通图G=(V,E)及其一棵支撑树T,图G的一个L(d,1)-T标号即函数g:V(G)→{0,1,2,…},满足:(1)如果xy∈E(G),则|g(x)-g(y)|≥1;(2)如果dG(x,y)=2,则|g(x)-g(y)|≥1;(3)如果xy∈E(T),则|g(x)-g(y)|≥d.假设图G有一个L(d,1)-T标号函数g:g(V){0,1,2,…,k},则图G的所有L(d,1)-T标号函数中最小的整数k记为L(d,1)-T标号数λdT(G,T).本文证明了若G是无K1,t(3≤t≤n)的连通图,其最大度为Δ,|G|=n,T为G的任意支撑树,则λdT(G,T)≤tt--12Δ2+Δ+2d-2.  相似文献   

6.
一类正则图的邻强边染色   总被引:1,自引:0,他引:1  
研究一类正则图G(n,n,r)(n=1,2(mod 3))的邻强边染色. 用构造性方法给出了一类正则图的邻强边染色, 验证了对|V(G)|≥3的连通图G(V,E)(G(V,E)≠C5), 有Δ(G)≤χ′αs(G)≤Δ(G)+2成立.  相似文献   

7.
2_补树图     
若简单连通图G=(V,E)满足G=T_1UT_2,E(T_1)∩E(T_2)=φ,其中T_1和T_2是G的生成树,则G称为简单2—补树图.本文研究了简单2—补树图的若干性质(10个定理),其中包括:2—补树图G顶点度的性质,κ(G),λ(G),δ(G),△(G),2—补树图的构造性质和判定条件.  相似文献   

8.
G是一个简单图.a(G),k(G)分别为G的代数连通度和点连通度,该文刻画了满足a(G)=k(G)的图.G=(V,E)是一个n阶简单图,点连通度为k(G)≤[n/2].H是G的任意最小点割集,则a(G)=k(G)当且仅当对任意u∈H和v∈V\H,有uv∈E.  相似文献   

9.
对于一个图G和一个正整数k,若图G中任意一条阶数为k的路都至少包含集合S⊆V(G)中的一个顶点,那么集合S就为图G的一个k-路点覆盖。最小的k-路点覆盖基数记为ψk(G),为图G的k-路点覆盖数。研究圈图分别与圈图、完全图及完全二部图做笛卡尔乘积图的k-路点覆盖,得到ψk(G)相关的精确值和上下界。  相似文献   

10.
连通度是衡量互连网络可靠性和容错性的一个重要参量,结构连通度与子结构连通度是经典连通度的推广。令H是图G的一个连通子图,F是由G中子图组成的集合,如果F中的每一个元素都同构于H(同构于H的连通子图),并且G-F不连通,则称F是G的一个H-结构割(H-子结构割)。图G的H-结构连通度κ(G;H)(H-子结构连通度κs(G;H)是元素最少的H-结构割(H-子结构割)的基数。文章确定了n-维折叠交叉超立方体的Pk结构连通度κ(FCQn;Pk)和子结构连通度κs(FCQn;Pk),其中3≤k≤n。  相似文献   

11.
令H为复的无限维可分的Hilbert空间, B(H)为H上有界线性算子的全体。称算子T∈B(H)满足Weyl定理, 若σ(T)\σw(T)=π00(T), 其中σ(T)和σw(T)分别表示算子T的谱集与Weyl谱, π00(T)={λ∈iso σ(T):0相似文献   

12.
定义在图G的顶点集V(G)上的函数f:V(G)→{0,1,2,3}称为G的双罗马控制函数,如果每个赋值为0的顶点至少与一个赋值为3或两个赋值为2的顶点相邻,并且每个赋值为1的顶点至少与一个赋值为2或3的顶点相邻。图的双罗马控制函数的权为所有顶点的赋值之和。双罗马控制函数的最小权称为双罗马控制数。利用顶点数、围长、周长以及最小度得到了含圈图的双罗马控制数的若干上下界。  相似文献   

13.
若σ(T)\σw(T)=π00(T), 则称T∈B(H)满足Weyl定理。 T∈B(H)满足Weyl定理的紧摄动: 如果对任意的紧算子K∈B(H), T+K都满足Weyl定理本文给出了一种Weyl谱的变体, 根据该变体讨论了T 3和T满足Weyl定理的紧摄动的关系。  相似文献   

14.
利用Nevanlinna值分布理论,研究了两类非线性微分-差分方程f n+ωf n-1f '+b(f ')n+qeQf(z+c)=uev和f n1f n-1f '+ω2(f ')n+qeQf(z+c)=p1eλ1z+p2eλ2z的有限级整函数解的存在性,得到了两个结果,并举例证明文中所得结果是精确的。  相似文献   

15.
图G的线性2-荫度la2(G)是指可以使G分解为k个边不相交森林的最小整数k, 其中森林的每个分支是长度至多为2的路。 证明了若G是4-圈不共点的平面图,则la2(G)≤「Δ/2+5。  相似文献   

16.
设正则图G1和G2的剖分Q-邻接点冠图G1□·QG2是由Q(G1)和|V(G1)|个点不交的G2的拷贝,通过连接V(G1)中第i 个顶点的所有邻点与第i个G2的拷贝的所有点后得到的图; 剖分Q-邻接边冠图G1□—〓QG2是由Q(G1)和|I(G1)|个点不交的G2的拷贝,通过连接 I(G1)中第 i个顶点的所有邻点与第i个G2的拷贝的所有点后得到的图。其中Q(G1)是由图G1的每条边上插入一个新点且当图G1的2条边相邻时对应的2个新点之间连接一条边后得到的图, I(G1)是图G1中每条边上插入的新点所构成的集合。分别确定了剖分Q-邻接点冠图G1□·QG2和剖分Q-邻接边冠图G1□—〓QG2 的广义特征多项式及其相应的Φ-谱。得到了G1□·QG2和G1□—〓QG2的规范拉普拉斯谱, 同时也构造了一些Φ-同谱无穷类。  相似文献   

17.
利用范畴的等价定理和范畴之间的正合函子,给出了三角矩阵余代数Γ=(T TMU0 U)上的有限Gorenstein余表现余模的具体形式,并且得到三角矩阵余代数Γ与余代数TU之间的有限Gorenstein余表现维数的关系Max{G.cp.dimT,G.cp.dimU}≤G.cp.dimΓ≤G.cp.dimT+G.cp.dimU+1。  相似文献   

18.
以Z表示有理整数环。设L为一个特征为p的域, f(x)=∑nj=0ajxj∈L[x],L[x]表示L上的多项式环。假定在L的某个代数闭包上, f(x)=a∏ri=1(x-ηi)ei。此处,a∈L,一切ηi是两两不同的,r,e1,e2,…,er是正整数,且r≥2, n=∑rj=1ej。f的半判别式Δ(f)被定义为Δ(f)=a2n-11≤i,j≤ri≠jij)ei ej。证明了下面的结果: 如果n1,e2,…,er)有关的正整数m与G∈Z[x0,x1,…,xn],使得Δ(f)=1/mG(a0,a1,…,an)且m|n!。此外,当L为有限域时,还应用此结果研究了与环L[x]上相交多项式有关的一个问题。  相似文献   

19.
设n是任意正整数,令Zn是模n的剩余类环,并且Z*n是模n的即约剩余类环,即Z*n={s:1≤s≤n, gcd(s,n)=1}。通过利用同余理论与指数和的相关结果来研究集合T(a,b,c,n)={(x,y)∈(Z*n)2:ax2+by2+c≡0 mod n}的元素个数并给出集合T(a,b,c,n)元素个数的确切计算公式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号