首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cryosphere is one of the climate system component which plays an important role in the global biogeochemical mercury cycling. Anthropogenic mercury has been transported to remote cold and high regions worldwide through atmospheric circulation,and then transformed into methylmercury in the cryosphere. As one of the highly toxic environmental pollutants,methylmercury can be greatly bioaccumulated and biomagnified through the food web,which potentially poses threats to human and wildlife as well as the global cryospheric en⁃ vironments. In order to gain a full picture of research progress on methylmercury in the cryosphere,our study comprehensively summarized the concentration levels and analytical methods of methylmercury,and biogeo⁃ chemical processes such as the migration,transformation and fate of methylmercury in various cryospheric envi⁃ ronments including glacier,permafrost,snow ice and sea ice. We particularly made the literature review of mi⁃ crobial mercury methylation and evaluated the risk of methylmercury exposure to human and wildlife in the cryo⁃ sphere. Meanwhile,we focus on distribution,behavior,and environmental effects of methylmercury in the cryosphere against the backdrop of climate change,which is essential for assessing the exposure risk of methyl⁃ mercury to humans and wildlife. Perspectives of methylmercury researches in the cryosphere have also been highlighted in this review,though there is existing a knowledge gap of biogeochemical methylmercury cycling in the low temperature environments which merits further study. © 2023 The Author(s).  相似文献   

2.
Extent and chronology of Quaternary glaciation   总被引:1,自引:0,他引:1  
In a recent INQUA project the extent of Pleistocene glaciations has been digitally mapped and the chronology of events reviewed. The onset of the present Ice Age in both hemispheres dates back to the Palaeogene. In Greenland, Iceland, North America and southernmost South America sizeable ice sheets formed well before 2.6 ka BP. In Alaska and on Tierra del Fuego the ice advanced further than in any later glaciations. Evidence for Early Pleistocene glaciation (2.6-0. 78 Ma) has been reported from many parts of the world, but in most cases dating remains problematic, and the size of the glaciers and ice sheets is unknown.  相似文献   

3.
应用等效纬度-海拔模型进行地温及多年冻土制图   总被引:2,自引:2,他引:2  
This research presents a method for permafrost mapping in discontinuous permafrost regions based on equivalent latitude/elevation concept in interior Alaska. In winter months, study site has a strong temperature inversion in air up to 700 m elevation. Air temperature data and the effects of slope, aspect and elevation were used to create an equivalent latitude/elevation model. This model was well correlated with mean annual surface temperature (0.79). In this watershed, the thawing index (It≈1 400 ℃*days) at the ground surface and snow depth do not vary greatly from south facing to north facing slopes. The primary controlled factor that determines the mean annual surface temperature was the winter surface temperature. The permafrost stability is effectively controlled by the freezing index. We determined 37.5% of Caribou-Poker Creeks Research Watershed has unstable or thawing permafrost. At least 2.1% of the permafrost in this watershed may have disappeared in the last 90 years due to climate warming. This method makes it possible to evaluate the permafrost stability in the present, past and future.  相似文献   

4.
The distribution of permafrost and taliks is very complex in the Tuotuo River Basin(TRB), which is located in interior of the Qinghai-Tibet Plateau. Characterizing the spatial distribution and the thermal stability of permafrost and taliks is of great significance to community activities and engineering construction in TRB. Based on the zonation of permafrost and talik distribution around TRB conducted in the 1980s, the soil temperature and its variation process of permafrost and taliks in the south and north banks of the Tuotuo River were analyzed by using the observation data of five boreholes(N1~N5)along the Qinghai-Tibet Railway in the north bank and five boreholes(S1~S5)on the first terrace in the south bank. The results showed that, under the climate warming, permafrost and taliks in the north banks experienced significant degradation and warming process. From 2005 to 2020, the permafrost at the N1 borehole has undergone a significant down-draw degradation process, from extremely unstable and high-temperature permafrost to thawed zone. From 2005 to 2013, the annual average ground temperature of the talik at N2 increased at a rate of 0. 3~0. 4 °C·(10a)-1. At Maqutang on the south bank, permafrost prevails from the first-class terrace to the gentle slope of the Kaixinling Mountain, with both through and non-through taliks on the first-class terrace. The spatial distribution and the thermal stability of permafrost and talik in the TRB are further promoted by analyzing the changes in temperatures at boreholes in the basin. However, to meet the requirements of mapping and engineering construction of permafrost and taliks in the TRB, it is still necessary to carry out geological investigation with multiple methods and in-depth research on development mechanism of taliks in the future. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

5.
中国南极冰川学研究10 a回顾与展望   总被引:13,自引:7,他引:6  
The study of Antarctic glaciology in China is reviewed with the emphasis on the past decade. Much progress has been achieved in the physical characteristics of the Antarctic ice sheet and caps and in the study of climatic and environmental records in Antarctic snow and ice. Through observations of snow profiles of numerous snow-pits and shallow cores in the Wilkes Land and Lambert Glacier basin and along the route of the 1990 International Trans-Antarctica Science Expedition (ITASE), the regional features of snow deposition and densification in Antarctica were revealed. The Nelson Island ice cap in South Shetland Islands was investigated in detail that greatly enriched the knowledge of glaciers under a sub-Antarctic maritime climate. From the analyses of shallow ice cores and surface snow samples, in particular those taken along the ITASE route, the systematic data of stable isotopes, soluble impurities and heavy metal Pb in present precipitation in Antarctica has been obtained. Some suggestions are proposed through discussing the present hot points in the above fields.  相似文献   

6.
Snow is an important part of the cryosphere and plays an important role in the hydrological cycle and energy balance. Study of the spatiotemporal characteristics of snow cover and its change is the prerequisite for analyzing the formation,distribution and variation of runoff from mountains in inland river basins. In this study,we selected the upper reaches of the Taolai River basin of Qilian Mountains as the study area,used down⁃ scaling methods to obtain high-resolution snow depth data,and adopted methods of spatial statistics,sensitivity analysis and contribution separations to quantify snow cover distribution and variation influenced by terrain and the regional climate during the time period from 2002 to 2018. Results showed that basin early average snow depth ranged from 0 cm to 2. 5 cm,with variation from -0. 19 cm·a-1 to 0. 06 cm·a-1. The area of snow depth re⁃ duction during the study period accounted for 68. 30% of the total area. It was found that the snow depth increase more with altitude and less with the increase of slope. Variation of snow depth increased below 2 500 m a. s. l. and decreased above 2 500 m a. s. l. As the slope increases,it first increases and then decreases;the snow depth of each aspect decreases,especially in the northwest orientation. The sensitivity of snow depth to air tempera⁃ ture and solar radiation were found negative in general,while that of the precipitation was found positive. The precipitation in high-altitude areas has a relatively large contribution to the snow depth variation,while in the val⁃ ley areas,the contribution of temperature to snow cover is more significant. This work provides an example for the study of snow dynamics in the upper reaches of inland river watersheds,and benefits model simulation and prediction of mountain runoff and regional water management. © 2023 The Author(s).  相似文献   

7.
In this study, we applied synchrotron radiation X-ray fluorescence technique (SR-XRF) to investigate the heavy metals including Hg and Pb in a few single strands of pinnule of the outermost wing feather of snow petrel (Pagodroma Nivea) collected in the Antarctic. The microscopic distributions of Hg and Pb along with the strand of pinnule show significant variation and the types of distribution are different for pinules, suggesting that external contamination may have an important impact on the levels of Hg and Pb, rather than reflecting levels in the blood during feather formation. This should be taken into account in future monitoring studies. The sources of Hg and Pb detected in the feather were also discussed. Using feathers of snow petrel to investigate the springtime mercury depletion events (MDEs) in the Antarctic were proposed.  相似文献   

8.
In recent years,more and more attention has been paid to the problem of the cryosphere changes on the Tibetan Plateau,and it has gradually become a hot issue for scholars. Known as the“water tower of Asia”,the Tibetan Plateau is the source of many major rivers in Asia. Under the combined influence of climate change and human activities,water resources on the Tibetan Plateau have undergone profound changes,especially soil water,as an important component of water resources,which plays an important role in regulating vegetation and crop growth,rainfall and runoff. However,global warming leads to the degradation of permafrost and seasonal⁃ ly frozen soil,which affects the original water cycle process and the spatial and temporal pattern of water re⁃ sources by changing the properties of soil water storage and water transport. In the Tibetan Plateau,where there are few data,it is difficult to directly study the soil water cycle process under freezing-thawing by using original data. Therefore,it is an important means to simulate the variation characteristics of soil water and temperature under freezing-thawing in seasonally frozen soil regions of the Tibetan Plateau by using coupling model of soil water and heat. Aiming at the key problem of the difference of soil temperature and moisture characteristics in typical seasonally frozen soil regions under different meteorological conditions,this paper simulated the charac⁃ teristics of soil moisture and temperature change in Maqu,Naqu(Nagqu)and Shiquanhe from 2017 to 2018 by using SHAW(Simultaneous Heat and Water)model and three soil moisture characteristic curve models. The simulation effect and variation characteristics of soil moisture and temperature under different meteorological conditions were analyzed,and the influence of soil moisture characteristic curve model on the simulation effect was studied. The results show that SHAW model can well simulate the temporal variation and vertical distribu⁃ tion of soil temperature and moisture under different meteorological conditions. The simulation effect of soil tem⁃ perature is better than that of soil moisture. The average NSE,R2 and RMSE of soil temperature are 0. 88,0. 96 and 2. 20 ℃,respectively. The mean NSE,R2 and RMSE of soil moisture are 0. 60,0. 72 and 0. 03 m3·m-3,respec⁃ tively. In terms of different meteorological conditions,the simulation effect of soil temperature in relatively dry region was significantly better than that in humid region,while the simulation effect of soil water in relatively hu⁃ mid region was significantly better than that in arid region. From different depths in soil,the simulation effect of soil temperature decreases gradually with the increase of depth,while the simulation effect of soil moisture in the middle and lower layers is better than that in the surface layer. From the view of different soil moisture character⁃ istic curve models,different soil water characteristic curve models have no significant effect on soil temperature simulation effect,but there are significant differences in soil moisture simulation effect. In addition,there are great differences and uncertainties in simulating soil temperature and moisture in different freezing-thawing stag⁃ es. With the increasing trend of climate warming,permafrost and seasonally frozen soil on the Tibetan Plateau may continue to degrade,may change the current water resources pattern,resulting in frequent extreme weather events. Therefore,from the perspective of numerical simulation,this paper verified the applicability of soil moisture and heat coupling model in soil temperature and moisture simulation under different meteorological con⁃ ditions,revealed the influence of precipitation and temperature on soil temperature and moisture simulation at different depths in seasonally frozen soil regions,and analyzed the differences in simulation effects of different soil moisture characteristic curve models. The results provide reference for the study of soil water resources vari⁃ ation under freezing-thawing conditions. © 2023 Chinese Journal of General Practitioners. All rights reserved.  相似文献   

9.
RogerG.Barry 《冰川冻土》2002,24(5):523-525
The cryosphere is an integral part of the global climate system, however, many aspects of the cryosphere have not been fully covered within WCRP. Issues relating to potential changes in the climate cryosphere system become more and more important in order to describes research and coordination initiatives required to integrate fully studies of impact and response of the cryosphere to climate change. The article also indicates the recent progress of CliC, and its future plan.  相似文献   

10.
正1 Introduction Cold environments on the planet occur in the Antarctic,the Arctic and high mountains which cover with ice and snow permanently.Microorganism adapted to cold habitats has been detected,but most of them were prokaryotes.(Morgan-Kiss et al,2006;jungbut et al,2012).Research on cold-adapted microorganism has  相似文献   

11.
In this paper the characteristics of surface radiative fluxes and cloud-radiative forcing are reviewed with a focus on the Arctic. Three aspects are addressed, including (i) changes in radiation flux over the global surface; (ii) characteristics of surface fluxes in the Arctic; and (iii) characteristics of cloud-radiative forcing in the Arctic. The clouds not only significantly reduce the peak summer radiative heating of the surface but also reduce the wintertime radiative cooling at the surface in higher latitudes. The downward longwave fluxes dominates the incident radiative fluxes in the Arctic during most of the year. Incoming shortwave fluxes are negligible during late fall, winter and early spring, and even during the midsummer the incoming shortwave fluxes are only slightly greater than the downward longwave fluxes. The total net surface radiative flux is negative for most of the year and only positive during midsummer in the Arctic. The global net cloud-radiative forcing is negative, but the cloud-radiative forcing is positive in the Arctic, showing a warming effect, except for a short period in mid-summer. Positive cloud-radiative forcing in the Arctic is attributed to the presence of snow and ice with high albedo and the absence of solar radiation during the polar night.  相似文献   

12.
青藏铁路设计与建设——第六届国际冻土工程会议回顾   总被引:1,自引:1,他引:0  
The 6^th International Symposium on Permafrost Engineering was successfully held in China in September 2004. About 150 scientists and engineers from 7 countries attended the symposium in Lanzhou on 5~7 September, and about 35 people from 6 countries participated in the field trip along the QinghaiTibet Highway/Railway on 8~13 September and the seminar in Lhasa on 14 September 2004. During the Symposium, the latest progress on permafrost engineering and the surveys, design and construction of the Qinghai-Tibet Railway were exchanged and inspected. Fifty-eight technical papers in English from the Symposium were published in the first volume of the Proceedings of the Symposium, as a supplement of the Journal of Glaciology and Geocryology, before the symposium. About 6 papers from the symposium are published in the second volume in the volume 27(1) of the Journal of the Glaciology and Geocryology, after the symposium. The Qinghai-Tibet Railway (QTR) under construction will traverse 632 km of permafrost, and the engineers are facing unprecedented engineering and environmental challenges. With the QTR under construction and to be completed in 2007, permafrost engineering has become the research focus of permafrost scientists and engineers in China. Many encouraging and promising achievements in permafrost engineering have been obtained during the past three years. However, there are still numerous engineering and environmental problems needing to be solved or resolved. In the discussions, some experts pointed out that methods, such as removal of snow cover on the embankments and toe areas, light-color embankments and side slope surfaces, awnings for shading the solar radiation, hairpin or tilted thermosyphons, could be applied to actively cool the roadbed of the QTR. Some new ideas on utilization of the natural cold reserves were proposed to protect the QTR permafrost roadbed from thawing. Many questions and answers on the survey, design, construction, operations, maintenance and environmental protection were exchanged in situ and in the Lhasa seminar with participation by some major railway designers, regulators and administrators.  相似文献   

13.
According to 73 snow samples collected in the southeast and southwest of Tibetan Plateau in January,2021,the characteristics of hydrogen and oxygen stable isotopes(δD and δ18O)fractionation in dry season and the influence of water vapor migration on the chemical composition change of snow profile were revealed by measuring the stable isotopes of hydrogen and oxygen and soluble inorganic ions in snow,and the relationship between stable isotopes of hydrogen and oxygen and climate and the composition and source of soluble inorganic ions were discussed. The results show that the local meteoric waterline of snowpack in the whole study area is δD=7. 86δ18O+11. 8(R2=0. 95),which is close to the Lhasa winter meteoric waterline,and the slope and inter⁃ cept of the meteoric waterline in the southeast are slightly lower than those in the southwest. δD and δ18O fluctu⁃ ates from -178. 11% to -68. 07% and -23. 80% to -9. 61%,respectively,and the d-excess values fluctuate from 11. 03% to 23. 49%,showing low values of δD and δ18O in winter,and high d-excess values. The surface layer is relatively enriched in heavy isotopes,and the isotope values are higher than those of the lower snow sam⁃ ples,and the water vapor migration inside the snow makes the slope of the relationship between δD and δ18O dif⁃ ferent. The concentration sequence of the main soluble inorganic ions is Ca2+>SO42->Na+>NO3->Cl->K+>Mg2+> NH4+,of which Ca2+(42. 47%),SO42-(23. 53%)accounted for the largest proportion of cation and anion,re⁃ spectively,and the average concentration of ions in the southeast was higher than that in the southwest. The re⁃ sults of principal component analysis show that terrigenous sources are the main source of ions in snow,and NH4+ and some NO3- are related to human activities. The backward air mass trajectory shows that the source of water vapor is related to the water vapor transport controlled by the upper-altitude westerly circulation,and most of the ions are terrestrial mineral dust carried by westerly winds in winter. © 2023 The Author(s).  相似文献   

14.
The Antarctic continent and surrounding oceans,which are cold and isolated from human activities,constitute a key region for multidisciplinary investigations.Since the early interest during the International Geophysical Year (IGY) during 1957-1958,numerous scientific studies have so far been carried out in Antarctica by different countries,which have provided important insights into Earth and environmental processes such as regional climate warming and its effect to biodiversity,changes in ice sheet and ocean circulation,ozone depletion,and origin and evolution of continents.The challenge of the next phase of Antarctic research will be to integrate all fields of science into a holistic understanding of Earth and life processes of the Antarctic region.In this thematic issue of Geoscience Frontiers,we assemble a set of scientific papers related to geomorphology,biology,molecular spectroscopy,and geology reflecting the recent research activity in the Antarctic region.  相似文献   

15.
应用冷却路基原理建设青藏铁路   总被引:9,自引:6,他引:3  
More than half of the total length of the Qinghai-Tibet Railroad (QTR) traverses warm (0 to-1℃) permafrost areas, and about 40% of its total length is in ice-rich permafrost areas. Thc construction of the QTR also must consider the impacts of climatic warming along the QTR during the next 50~100 years. The latest projection indicates a warming of 2.2 to 2.6℃ on the Qinghai-Tibet Plateau (QTP) by the year 2050. Therefore, the key to the successful construction of the QTR is to protect permafrost from being thawed. Although railroad construction in permafrost areas has had a history of more than 100 years, the troubled sections of the railroads in permafrost areas have been greater than 30% of their total length. Based on the experiences and lessons learned from the road construction in permafrost areas, both in China and abroad, the author proposes that the principle of “active cooling” of railroad roadbed by lowering permafrost temperatures should be used in designing QTR, rather than that of “passive protection” of permafrost through increasing thermal resistance of roadway, such as increasing fill thickness and/or using insulative materials. This is especially important for the road sections in warm, ice-rich permafrost. In addition, this paper proposes several methods for “cooling the roadbcd” by controlling radiation, convection and conduction through modifying roadway structure and using different fill materials.  相似文献   

16.
To investigate the seasonal variability and potential environmental significance of trace elements in mountain glaciers, the surface snow and snow pit samples were collected at Urumqi Glacier No. 1 (43o06'N, 86o49'E, 4 130 m a.s.l.), eastern Tianshan (天山), from September 2002 to September 2003, and analyzed for Li, V, Cr, Mn, Co, Cu, and Ba. The samples were acidified (leached) in a manner intended to reasonably approximate the extent to which the natural hydrologic and weathering cycles would liberate elem...  相似文献   

17.
Snowmelt runoff is a valuable water resource in Northwest China. In the past few decades, progress has been achieved in snowmelt runoff simulation in mountainous areas, including observation and simulation of snow melt process, improvement and development of distributed snow melt runoff model, and ability for application of snow melt runoff model with temporal and spatial distribution driving data. The development of interpolation algorithm, remote sensing and data assimilation technology provides data support for the widespread application of distributed snowmelt runoff model in northwest mountainous regions of China. Climate warming and economic and social development will further aggravate the contradiction between supply and demand of water resources in the arid regions of Northwest China, which requires higher precision and detail spatial and temporal resolution of snowmelt runoff simulation. Based on the progress and challenges on snowmelt runoff simulation in mountainous regions of Northwest China, following studies need more attention:the mechanism of snow accumulation and ablation, snow cover spatial and temporal distribution monitoring and high precision of snow distribution data acquisition, quantitative climate change impact on river basin snowmelt runoff. © 2022 The authors.  相似文献   

18.
Methanesulphonate was investigated as a potential contributor to the sulphur budget based on the analysis on Antarctic snow/ice from Coffins Ice Cap, King George Island (62°10' S, 58°50,W). The anion was found to be present at a mean concentration of 0. 17 μeq. L-1 with a maximum of 0.73 μeq. L-1. A distinct seasonal variation exists in the top 10 m of the core, equivalent to more than two years of deposition. Dating resulted from δ18O profile suggests that the principal peaks of methanesulphonate are associated with snow deposited in autumn and secondary peaks in spring. The seasonal patterns of methanesulphonate in the subantarctic snow displays a phase difference from that observed in marine air from low and middle latitudes.  相似文献   

19.
Permafrost along the Qinghai-Tibet railway is featured by abundant ground ice and high ground temperature. Under the influence of climate warming and engineering activities, the permafrost is under degradation process. The main difficulty in railway roadbed construction is how to prevent thawing settlement caused by degradation of permafrost. Therefore the proactively cooling methods based on controlling solar radiation, heat conductivity and heat convection were adopted instead of the traditional passive methods, which is simply increasing thermal resistance. The cooling methods used in the Qinghai-Tibet railway construction include sunshine-shielding roadbeds, crushed rock based roadbeds, roadbeds with rock revetments, duct-ventilated roadbeds, thermosyphon installed roadbeds and land bridges. The field monitored data show that the cooling methods are effective in protecting the underlying permafrost, the permafrost table was uplifted under the embankments and therefore the roadbed stability was guaranteed.  相似文献   

20.
The Nordic countries have experienced multiple glaciations and intervening interglacials during the last ca. 2.5-3 million years. Although evidence from Greenland and Iceland shows that ice sheets started to expand some time before 3 Ma, little is known about the glaciations and intervening interglacials older than the last Glacial Maximum due to repeated phases of glacial erosion and reworking. The extensive Saalian glaciation (c. 140 ka BP) contributed to high sea levels in Greenland and in the Baltic area during the early part of the last interglacial (Eemian). Temperatures were about 5 ℃ higher during the Eemian than they are today and the Greenland ice sheet was reduced to about half of its present size, causing globally higher sea levels than we have today. Ice extent in Fennoscandia was restricted during early Weichselian stadials, but middle Weichselian ice advances in Scandinavia reached as far as Denmark. During the Last Glacial Maximum, large ice sheets were present in all Nordic countries and coalesced with neighboring ice sheets. Deglaciation commenced around 17-15 ka BP in most areas and was promoted by rapidly rising global sea level and glacial isostasy. The Younger Dryas cold event(c. 12.6-11.5 ka BP) is seen as a short-term re-advance, still-stand or fluctuation of land-based ice sheet margins. Around 7-9 ka BP ice sheets had disappeared or had attained their present size. While uplift is still going on in some regions, others are subject to submergence. The different stages of development of the Baltic Sea are an example of how the intricare interplay between glacial eustasy and isostasy influences sedimentation, basin size and drainage patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号