首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nd和Ce对AZ91镁合金组织和力学性能的影响   总被引:3,自引:2,他引:1  
利用SEM和XRD等方法研究了总含量为2.5%的单独或复合加入Nd和Ce的AZ91镁合金的铸态显微组织和相组成,并测试和分析了合金的室温力学性能.结果表明,单独加Nd和单独加Ce的AZ91合金中形成的稀土相分别是块状的Al2Nd相和针状的Al11Ce3相,二者混合加入时两种稀土相同时出现,两种稀土相的相对含量与两种RE元素的相对含量相关.当混合加入Nd和Ce时,合金的Al2Nd相中的部分Nd和A11Ce3相中的部分Ce分别被Ce和Nd置换;Nd和Ce的加入可以明显改善AZ91合金的力学性能,其原因与稀土相消耗基体中部分Al、RE的晶粒细化、弥散强化等有关.其中AZ91+1.0Nd+1.5Ce合金的力学性能最好,其铸态合金的抗拉强度和伸长率分别达到240 MPa和11%.  相似文献   

2.
AZ91+0~2.0%La铸造镁合金的组织和力学性能   总被引:1,自引:0,他引:1  
利用SEM和XRD等方法研究不同La添加量的AZ91+xLa(x=0%,0.3%,0.5%,0.7%,1.0%,1.5%,2.0%)(质量分数,下同)镁合金的铸态显微组织和相组成,并测试和分析合金的室温力学性能.结果表明:AZ91合金中加入0.3%~2.0%的La后,合金的晶界和枝晶界析出Al11La3化合物,其形态随La含量的增加从针状向片状过渡,同时β-Mg17Al12相的体积分数及尺寸随La加入量的增加而减小.此外,La的加入可明显细化AZ91合金的显微组织,其最佳加入量为1.0%~1.5%.稀土La的加入可以明显改善AZ91合金的力学性能,其原因与稀土细化组织、改变β-Mg17Al12相的体积分数及尺寸、弥散强化等有关.在本试验研究的合金中,AZ91+1.5%La合金力学性能最好,其铸态合金的抗拉强度和断裂延伸率分别达到226 MPa和7.5%.  相似文献   

3.
采用稀土元素La对AZ91D镁合金进行材料改性,以提高该合金的力学性能与耐磨性。结果表明:AZ91D+La合金的晶粒及硬质β-Mg_(17)Al_(12)相较AZ91D镁合金要明显细化,并且AZ91D+La合金铸态组织中存在针状的稀土Al4La相。加入稀土元素La的AZ91D合金的硬度、屈服强度、伸长率和拉伸强度分别增长了14.77%、16.67%、12.12%、19.02%,且添加La的AZ91D合金较未添加稀土La的AZ91D镁合金具有更好的耐磨性。  相似文献   

4.
La对AZ61镁合金组织及性能的影响   总被引:1,自引:0,他引:1  
研究添加稀土La含量为(0,0.5,1.0,1.5)%对AZ61合金的微观组织及室温力学性能的影响.结果表明:加入0.5% ~1.5%的稀土后,铸态AZ61合金组织中的β-Mg17Al12相明显变得细小,形成了针状的Al11La3相.当稀土含量超过1.0%时,针状的Al11 La3相开始粗化长大,β-Mg17 Al12相的网状结构开始分离,变得细小;La的加入可以提高AZ61合金力学性能,当加入的La含量为1.0%时,AZ61合金的力学性能最好.因此,AZ61合金中加入La的质量分数为1.0%时,为合金化的最佳值.  相似文献   

5.
研究了不同的稀土含量(富Ce和Mg-Nd中间合金)对AZ61镁合金在热挤压变形过程中显微组织和力学性能的影响。结果表明,在加入1%~4%的混合稀土后,铸态AZ61镁合金组织中的β相明显减少,铸态组织晶粒得到细化,大部分的Ce,Nd与Al结合生成高熔点、高稳定性的稀土相Al4Ce或者Al4Ce和Al3Nd稀土混合相,并呈针状、棒状或者不规则块状分布于晶界或晶粒内部,同时各试验合金中均不同程度分布有不规则的块状α-Al8Mn5相;在热挤压过程中,Al4Ce或者Al4Ce和Al3Nd稀土混合相阻碍晶粒或亚晶粒长大,使晶粒较铸态组织变细,合金力学性能随稀土含量的增加有所提升,但由于稀土相较粗大,割裂晶界及晶粒间的结合力,使其性能大幅度下降;铸态AZ61+xRE各试验合金均为脆性断裂机制,挤压态AZ61合金断裂方式属于以韧性为主的韧脆混合断裂,含稀土挤压态合金中分布有塑性特征的韧窝,但主要以解理断裂为主。  相似文献   

6.
锑和混合稀土对AZ91镁合金流动性的影响   总被引:5,自引:0,他引:5  
研究了锑和混合稀土对AZ91镁合金的流动性及结晶温度间隔的影响,结果表明:在AZ91中添加0.4%Sb,可以使该合金流动性提高34%,结晶温度间隔减少16℃;添加0.8%RE,可以使该合金流动性提高26%,结晶温度间隔减少21℃;同时加入0.8%RE和0.4%Sb使该合金的流动性提高31%,结晶温度间隔减少28℃.锑与合金中的镁形成短棒状的金属间化合物Mg3Sb2,混合稀土与合金中的铝形成片状金属间化合物Al11La3 和Al11Ce3;两种添加物均可以细化AZ91合金的铸态组织.  相似文献   

7.
稀土Nd对AZ31变形镁合金组织与性能的影响   总被引:5,自引:0,他引:5  
研究在AZ31B变形镁合金中添加稀土Nd对AZ31B合金铸态和热轧退火态性能及组织的影响。结果表明:在AZ31B变形镁合金中添加Nd后,合金的铸态和热轧退火态的室温抗拉强度和伸长率均降低;加入的Nd与Al形成Al2Nd相,Nd还可以与Al和Mn形成Al-Nd-Mn化合物,剩余的Al还可以和Mg形成Mg17Al12相。含Al和Mn的金属间化合物削弱元素Al、Mn对镁合金的晶粒细化作用导致晶粒粗大,进而降低铸态AZ31B合金性能;热稳定性好的粗大第二相的出现也是导致合金铸态性能降低的原因,增大变形量使第二相得到充分破碎,会使板材力学性能得到改善。  相似文献   

8.
Nd改性AZ91合金的显微组织和力学性能   总被引:1,自引:1,他引:0  
稀土Nd加入AZ91合金中可生成Al-Nd相并细化合金晶粒.Nd含量影响合金中Al-Nd相的种类、形貌、大小和分布,从而改变合金的室温拉伸力学性能.当Nd含量为1.0%时,合金中析出的Al-Nd相主要为针状的Al11Nd3相;当Nd含量为到2.0%时,针状的Al11Nd3相已经比较少,块状的Al2Nd相为主要的Al-Nd相;当Nd含量为到2.5%时,析出的Al-Nd相几乎全部为块状的Al2Nd相.Nd含量由1.0%增加到2.0%时,合金的伸长率、抗拉强度和屈服强度分别增加 33%、14%和4%;Nd含量由1.0%增加到2.5%时,上述三者分别增加44%、18%和6%.  相似文献   

9.
利用光学显微镜、X射线衍射仪、扫描电镜,研究了稀土Nd对AZ80镁合金组织和力学性能的影响。AZ80镁合金铸态组织由基体α-Mg和晶界处析出的粗大连续网状β-Mg_(17)Al_(12)相组成。添加Nd后,使原本粗大连续的β-Mg_(17)Al_(12)相转变为细小和断续分布,同时,合金中产生了形态分别呈杆状的Al_(11)Nd_3相和块状的Al2Nd稀土相。随着Nd元素添加量的增加,AZ80镁合金的铸态力学性能呈先提高后下降的趋势。当加入0.9%的Nd时,合金的铸态抗拉强度和屈服强度均达到最高,分别为205MPa和135MPa,伸长率达到7.5%。时效过程中稀土元素Nd抑制了片状β-Mg_(17)Al_(12)相的不连续析出,延迟合金达到峰时效的时间。T6处理后,AZ80-0.6Nd合金的抗拉强度和屈服强度最高,分别为221MPa和164MPa,伸长率为4.1%。  相似文献   

10.
锑和稀土对Mg-9% Al-0.4% Zn合金铸态组织与力学性能的影响   总被引:18,自引:1,他引:18  
杨忠  李高宏  李建平  张蔚宁  周道林  王亚林  刘三 《铸造》2002,51(11):690-694
锑和稀土均有细化Mg-9%Al-0.4%Zn合金铸态组织的作用,而且锑和稀土的同时加入,复合细化效果更显著,锑与合金中的镁元素形成短棒状的金属间化合物Mg3Sb2,稀土与合金中的铝元素形成片状金属间化合物Al11La3 和Al11Ce3。各相在a-Mg晶粒内和晶界均有分布,单独加入锑或稀土时对该合金的铸态室温力学性能基本没有影响,但同时添加0.8%RE和0.4%Sb时,合金的铸态室温力学性能显著提高,与Mg-9%Al-0.4%Zn合金相比,添加0.8%RE和0.4%Sb合金的铸态拉伸强度σb提高了33%,伸长率δ提高了70%,铸态Mg-9%AL-0.4%Zn-0.4%Sb-0.8RE拉伸断口具有明显的塑性变形特征。  相似文献   

11.
12.
13.
14.
Conclusions Highly alloyed steels and alloys are produced in conformity with GOST or technical specifications in thick and thin sheets, beams and channels, bars, hot-rolled and cold-rolled pipe, and rod. Castings are produced in the specialized plant of the Ministry of Chemical and Petroleum Machine Building.The technology of welding stainless steels and alloys is given in [15] and [16].TsNIIChERMET. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 43–50, October, 1967.  相似文献   

15.
模具渗硼工艺及其发展应用   总被引:4,自引:0,他引:4  
渗硼是提高模具使用寿命的重要途径,是在金属表面形成高硬度的金属硼化层,显著提高其耐磨性,且具有良好的耐热性和耐蚀性。近年来,随着渗硼工艺逐步改进和完善,已发展了复合渗、多元共渗及低温渗硼工艺,取得了良好的经济效果。  相似文献   

16.
17.
The possibility of using unique properties of lanthanides in the nanotechnology is demonstrated. The origination of linear and nonlinear optical properties of lanthanide compounds with phthalocyanines, porphyrins, naphthalocyanines, and their analogs in solutions and condensed state and the prospects of obtaining novel materials on their basis are discussed. Based on the electronic structure and properties of lanthanides and their compounds, namely, optical and magnetic characteristics, electronic and ionic conductivity, and fluctuating valence, molecular engines are classified. High-speed storage engines or memory storage engines; photoconversion molecular engines based on Ln(II) and Ln(III); electrochemical molecular engines involving silicate and phosphate glasses; molecular engines whose operation is based on insulatorsemiconductor, semiconductor-metal, and metal-superconductor types of conductivity phase transitions; solid electrolyte molecular engines; and miniaturized molecular engines for medical analysis are distinguished. It is shown that thermodynamically stable nanoparticles of Ln x M y composition can be formed by d elements of the second halves of the series, i.e., those arranged after M = Mn, Tc, and Re. Prospects of using lanthanide superconductors in nanotechnology are considered.  相似文献   

18.
ADI和CADI在冶金矿山等行业中的应用及前景   总被引:1,自引:1,他引:0  
综述了ADI和CADI的耐磨性能及耐磨原理;详细介绍了ADI磨球、衬板和锤头的应用情况,认为ADI件无论在综合力学性能,还是在耐磨性、使用寿命、成本方面都优于高铬铸铁件;同时还介绍了CADI在农业机械领域的应用效果.根据我国钢铁行业的发展趋势,指出ADI和CADI耐磨件市场前景广阔.  相似文献   

19.
结合近年来现场试验与施工实践,分析研究了中小型镍材(工业纯镍)设备与管道的特点、性能、焊接缺陷与产生原因,以及防止与消除其缺陷、优化制造施焊质量的工艺措施,并总结了若干条注意事项。  相似文献   

20.
国内习惯上所指复合模仅限于单工位,对于多工位连续复合模,至今在国内有关行业标准、国家标准、手册及专业教材中均未提及。本参照德国工程师协会编辑出版的有关技术准则,介绍单工位与多工位连续复合模的类型、结构及其设计要点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号