首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Swetha  Ravi Kumar 《Materials & Design》2011,32(8-9):4152-4163
Hollow glass microspheres/epoxy foams of different densities were prepared by stir casting process in order to investigate their mechanical properties. The effect of hollow spheres content and wall thickness of the microspheres on the mechanical response of these foams is studied extensively through a series of quasi-static uni-axial compression tests performed at a constant strain rate of 0.001 s?1. It is found that strength of these foams decreases linearly from 105 MPa (for the pure resin) to 25 MPa (for foam reinforced with 60 vol.% hollow microspheres) with increase in hollow spheres content. However, foams prepared using hollow spheres with a higher density possess higher strength than those prepared with a lower one. The energy absorption capacity increases till a critical volume fraction (40 vol.% of the hollow microspheres content) and then decreases. Failure and fracture of these materials occur through shear yielding of the matrix followed by axial splitting beyond a critical volume fraction.  相似文献   

2.
This study focuses on the constitutive modelling of finite deformation in elastomeric polyurethane foams—in particular, PORON-4701-59-25045-1648 (0.4 g/cm3 density) and PORON-4701-59-20093-1648 (0.32 g/cm3 density). Their mechanical properties under compression, for engineering strains up to about 80%, are characterized over a range of strain rates between 10−2 and 103/s. Dynamic compression is applied using a split Hopkinson pressure bar device. Experimental results show that the behaviour of elastomeric foam is sensitive to strain rate and can be described by a visco-hyperelastic material model. In this model, the quasi-static response is defined by compressible hyperelasticity, whereby the strain energy potential is assumed to be representable by a newly proposed polynomial series with three independent parameters. Strain rate sensitivity is characterized by incorporating a nonlinear Maxwell relaxation model with four parameters. The (seven) material parameters in the constitutive model are determined from high-speed mechanical testing methods tailored for high-compliance materials. A comparison of predictions based on the proposed frame-independent constitutive equation with experiments shows that the model is able to describe the rate dependent behaviour of the elastomeric foams examined.  相似文献   

3.
The final objective of this study is to improve the mechanical behaviour of composite sandwich structures under dynamic loading (impact or crash). Cellular materials are often used as core in sandwich structures and their behaviour has a significant influence on the response of the sandwich under impact. Syntactic foams are widely used in many impact-absorbing applications and can be employed as sandwich core. To optimize their mechanical performance requires the characterisation of the foam behaviour at high strain rates and identification of the underlying mechanisms.Mechanical tests were conducted on syntactic foams under quasi-static and high strain rate compression loading. The material behaviour has been determined as a function of two parameters, density and strain rate. These tests were complemented by experiments on a new device installed on a flywheel. This device was designed in order to achieve compression tests on foam at intermediate strain rates. With these test machines, the dynamic compressive behaviour has been evaluated in the strain rate range up [6.7 · 10−4 s−1, 100 s−1].Impact tests were conducted on syntactic foam plates with varying volume fractions of microspheres and impact conditions. A Design of Experiment tool was employed to identify the influence of the three parameters (microsphere volume fraction, projectile mass and height of fall) on the energy response. Microtomography was employed to visualize in 3D the deformation of the structure of hollow spheres to obtain a better understanding of the micromechanisms involved in energy absorption.  相似文献   

4.
In this paper, results of an experimental study on the quasi-static and high-rate plastic deformation due to impact of a high-purity, polycrystalline, α-titanium material are presented. It was found that the material is transversely isotropic and displays strong strength differential effects. Split Hopkinson Pressure Bar tests in tension and compression and Taylor impact tests were conducted. For an impact velocity of 196 m/s, plastic deformation extended to 64% of the length of the deformed specimen, with little radial spreading. A three-dimensional constitutive model was developed. Key in the formulation was the use of a macroscopic yield function that incorporates the specificities of the plastic flow, namely the combined effects of anisotropy and tension–compression asymmetry. Comparison between model predictions and data show the capabilities of the model to describe with accuracy the plastic behavior of the α-titanium material for both quasi-static and high-rate loadings. In particular, the three-dimensional simulations of the Taylor impact test show a very good agreement with data, both the post-test major and minor side profiles and impact interface footprints are very well described.  相似文献   

5.
Metal foams are used as absorbers for kinetic energy but predominantly, they have only been investigated under quasi-static load-conditions. Coating of open-cell metal foams improves the mechanical properties by forming of Ni/Al hybrid foam composites. The properties are governed by the microstructure, the strut material and geometry. In this study, the strain-rate effects in open-cell aluminium foams and new Ni/Al composite foams are investigated by quasi-static compression tests and low-velocity impact. For the first time, drop weight tests are reported on open-cell metal foams, especially Ni/Al composite foams. Furthermore, size-effects were evaluated. The microstructural deformation mechanism was analysed using a high-speed camera and digital image correlation. Whereas pure aluminium foams are only strain-rate sensitive in the plastic collapse stress, Ni/Al foams show a general strain-rate sensitivity based on microinertia effects and the rate-sensitive nano-nickel coating. Ni/Al foams are superior to aluminium foams and to artificial aluminium foams with equal density.  相似文献   

6.
Plasma Electrolytic Oxidation (PEO) coating treatment is applied to open celled aluminium foams with different structures, aiming to enhance the mechanical performance of the composite material. The mechanical properties of the coated foams produced are assessed experimentally, both in tension and compression. From experimental results, yield stress is found to increase initially with increasing PEO coating thickness, though this trend is not maintained with thicker coatings. This is caused by the transformation of greater quantities of metal to ceramic with thicker coatings (leading to more flaw-sensitive behaviour), and higher defect density in the surface layer (reducing the strength of the coating material). The specific strength of the samples (the yield strength per unit weight for a fixed volume) is shown to initially increase with coating thickness, although, due to the diminishing mechanical benefit and constant weight increase, the effect of substantial coatings is less beneficial. The optimum coating thickness appears to be in the region of 13 μm for the low porosity replicated foams tested in compression, and a value between 18 and 50 μm for the high porosity investment cast foams tested in tension.  相似文献   

7.
环氧树脂复合泡沫材料的压缩力学性能   总被引:5,自引:5,他引:0       下载免费PDF全文
对空心玻璃微珠填充环氧树脂复合泡沫材料进行了准静态压缩实验, 研究了材料的宏观压缩力学性能, 并提出了弹性模量和屈服强度的预测公式。此外, 对压缩试件的断口进行了宏、细观观察, 研究了材料的压缩破坏机理。结果表明, 复合泡沫材料在压缩过程中, 具有普通泡沫材料的应力-应变曲线的典型特征, 在应变为2 %左右时材料发生屈服, 在应变大于30 %后发生破坏。此外, 材料的杨氏模量和强度均随密度的减小而下降, 预测公式给出的结果与实验值基本一致。压缩试件断口的宏、细观观察表明, 复合泡沫材料主要的破坏形式为剪切引起的弹塑性破坏。   相似文献   

8.
A novel manufacturing route for fully recyclable corrugated sandwich structures made from self-reinforced poly(ethylene terephthalate) SrPET composites is developed. The dynamic compression properties of the SrPET material and the out-of-plane compression properties of the sandwich core structure are investigated over a strain rate range 10−4–103 s−1. Although the SrPET material shows limited rate dependence, the corrugated core structures show significant rate dependence mainly attributed to micro-inertial stabilisation of the core struts and increased plastic tangent stiffness of the SrPET material. The corrugated SrPET cores have similar quasi-static performance as commercial polymeric foams but the SrPET cores have superior dynamic compression properties.  相似文献   

9.
Al–Si (355.0) alloy foam has been produced by Alporas method (in which foam alloy melts, and titanium hydride is used as a blowing agent). Mechanical behavior such as quasi-static compression (strain–stress curves, energy absorption capacity), also the effects of thermal properties on the macroscopic structure of the produced foam were investigated. In addition, the effect of energy absorption capacity on percentage porosity has also been studied. The research shows that the produced foam with an average cell size and proper distribution has a more mechanical stability compared to the foams with no such characteristics. It was found that yield strength tends to increase from 12.51 MPa for porosity 74.0% to 22.32 MPa for porosity 54.0%. This foam has also been compared with other foams such as Al-pure foam and Mg foam. It can be stated that Al–Si (355.0) foam has a higher yield strength in comparison to Al-pure foam and Mg foam.  相似文献   

10.
An organic foam derived from a new type of phenolic resin, namely polybenzoxazine, was successfully prepared with a noncomplex and economical foaming method by using azodicarbonamide (AZD) as a foaming agent. The influence of foam density on the physical and mechanical properties of the foams was studied. All resulting polybenzoxazine foams and carbon foams exhibit a tailorable uniform microstructure. Polybenzoxazine foams showed a density in the range of 273–407 kg/m3, and a compressive strength and a compressive modulus in the range of 5.2–12.4 MPa and 268–681 MPa, respectively. The foam density not only affects the physical and mechanical properties, but also affects the deformation response of the foam. In addition, the polybenzoxazine foam was further transformed into carbon foam by carbonization at 800 °C under an inert atmosphere, and its properties were examined.  相似文献   

11.
The mechanical behavior of foamed aluminum   总被引:22,自引:0,他引:22  
Experiments have been carried out to investigate the mechanical behavior of foamed aluminum with different matrixes and states. It is found that the matrix composition has a significant influence over the deformation, failure and fracture of foamed aluminum. Like other cellular solid materials, Al foam shows a smooth compression stress–strain curve with three regions characteristic of plastic foams: linear elastic, plastic collapse and densification. AlMg10 foam has a serrated plateau and no densification, characteristic of brittle foams. AlMg10 foam has higher compressive and tensile strength but lower ductility than Al foam. The difference in the mechanical properties between Al foam and AlMg10 foam decreases as the relative density decreases, and when it is lower than roughly 0.15, no difference can be discerned. The mechanical properties in compression are clearly higher than those in tension, which can be explained in terms of dislocation theory and stress concentration behavior.  相似文献   

12.
High-Performance Fiber-Reinforced Cementitious Composite (HPFRCC) materials exhibit strain hardening in uniaxial, monotonic tension accompanied by multiple cracking. The durability of HPFRCC materials under repeated loading makes them potentially suitable for seismic design applications. In this paper, the strain rate dependence of tensile properties of two HPFRCC materials in cylindrical specimens is reported from a larger study on strain rate effects in tension, compression and cyclic tension–compression loading. The cylindrical specimens were loaded in monotonic tension at strain rates ranging from quasi-static to 0.2 s−1. To evaluate the impact of specimen geometry on tensile response, coupon specimens loaded in monotonic tension under a quasi-static strain rate were compared to corresponding cylindrical specimens made from the same batch of material. Tensile strength and ductility of the HPFRCC materials were significantly reduced with increasing strain rate. Multiple cracking, strain hardening, strain capacity, and the shape of the stress–strain response were found to be dependent on specimen geometry. SEM images taken of the fracture plane of several specimens indicated that pullout and fracture of the fibers occurred for both HPFRCC materials studied here.  相似文献   

13.
Expanded polypropylene foams (EPP) can be used to absorb shock energy. The performance of these foams has to be studied as a function of several parameters such as density, microstructure and also the strain rate imposed during dynamic loading. The compressive stress–strain behaviour of these foams has been investigated over a wide range of engineering strain rates from 0.01 to 1500 s−1 in order to demonstrate the effects of foam density and strain rate on the initial collapse stress and the hardening modulus in the post-yield plateau region. A flywheel apparatus has been used for intermediate strain rates of about 200 s−1 and higher strain rate compression tests were performed using a viscoelastic Split Hopkinson Pressure Bar apparatus (SHPB), with nylon bars, at strain rates around 1500 s−1 EPP foams of various densities from 34 to 150 kg m−3 were considered and microstructural aspects were examined using two particular foams. Finally, in order to assess the contribution of the gas trapped in the closed cells of the foams, compression tests in a fluid chamber at quasi-static and dynamic loading velocities were performed.  相似文献   

14.
采用同步法制备了聚氨酯/环氧树脂互穿聚合物网络(IPN)半硬泡沫。通过压缩和拉伸试验研究了泡沫材料密度对力学性能的影响。研究表明,在所研究的密度范围内,泡沫的压缩模量和屈服强度均与密度成指数关系。泡沫的拉伸模量和断裂强度与密度也存在类似的关系。利用这些方程可以很好地预测泡沫力学性能随密度的变化关系。IPN泡沫兼有较好的韧性和较高的拉伸强度。相同形变下,相同密度IPN半硬泡沫拉伸过程的单位体积吸能大于压缩过程的单位体积吸能。  相似文献   

15.
This paper describes the mechanical response of lightweight mortars subjected to impact loading in flexure. Expanded perlite aggregate with a bulk density of 64 kg/m3 was used at between 0 and 8 times by volume of Portland cement to yield a range of mortars with density between 1000 and 2000 kg/m3. Some specimens were reinforced with a polypropylene microfibre at 0.1% volume fraction and the dynamic fracture toughness was evaluated by means of an instrumented drop-weight impact system. Companion tests were carried out in compression under quasi-static loading to standardise the mixes. The compressive strength and elastic modulus scale as the cube of the relative density, defined as the ratio of the density of the mortar to that of Portland cement paste. Whereas the flexural strength and fracture toughness were both linearly proportional to the relative density of the mortar under quasi-static loading, there was an increase in their sensitivity to relative density at higher loading rates. Contrary to what is seen in regular concrete, fibre reinforcement led to an increase in the stress-rate sensitivity of flexural strength in lightweight mortars. For the same impact velocity, the stress-rates experienced by a specimen was strongly influenced by its density. While the stress-rate sensitivity of flexural strength dropped with a decrease in the mix density, that of the fracture toughness was consistently higher for the lighter mixes.  相似文献   

16.
Although metal foams are a relatively new material, substantial knowledge has been accumulated about their mechanical properties and behaviour under monotonic loads and tension–tension and compression–compression cyclic loads. However, there are very few reports of the behaviour of metal foams under tension–compression‐reversed loading. In this paper, we examine some of the rare published data regarding the tension–compression cyclic response of metal foams, develop a statistical model of the fatigue lifetime and propose two damage accumulation models for aluminium‐closed cell foams subjected to a fully reversed cyclic loading. In developing these models a fatigue analysis and a failure criterion for the material are needed; the fatigue models considered are the Coffin–Manson and the statistical Weibull model, and the failure criterion used is the one described by Ingraham et al. (Ingraham, M.D., DeMaria, C.J., Issen, K.A. and Morrison, D.J.L. (2009). Mater. Sci. Eng. A. 504:150–156). The models developed are compared with the experimental published data by Ingraham et al. (Ingraham, M.D., DeMaria, C.J., Issen, K.A. and Morrison, D.J.L. (2009). Mater. Sci. Eng. A. 504:150–156) and a final analysis was performed to determine whether it is preferable to use the total or plastic strain amplitude for the fatigue analysis.  相似文献   

17.
Polymeric foams are commonly used in many impact-absorbing applications and thermal-acoustic insulated devices. To improve their mechanical performances, these structures have to be modeled. Constitutive equations (for their macroscopic behavior) have to be identified and then determined by appropriate tests.Tests were carried out on polypropylene foams under high strain rate compression. In this work, the material behaviour has been determined as a function of two parameters, density and strain rate. Foams (at several densities) were tested on a uniaxial compression for initial strain rates equal to 0.34 s−1 and on a new device installed on a flywheel for higher strain rates. This apparatus was designed in order to do stopped dynamic compression tests on foam. With this testing equipment, the dynamic compressive behaviour of the polymeric foam has been identified in the strain rate range [6.7.10−4s−1, 100s−1].Furthermore, the sample compression was filmed with a high speed camera monitored by the fly wheel software. To complete this work, picture-analysis techniques were used to obtain displacement and strain fields of the sample during its compression. Comparisons between these results and stress-strain responses of polypropylene foam allow a better understanding of its behaviour. The multiscale damage mechanism, by buckling of the foam structure, was emphasised from the image analysis.  相似文献   

18.
It has been well established that ALPORAS® foams is a strain rate sensitive material. However, the strain rate effect is not well quantified as it is not unusual for strain rate to vary during high speed compression. Moreover, according to previous research, aluminium foams, especially ALPORAS® foams, behave differently at low and high strain rates. Therefore, different plastic deformation mechanisms are expected for low and high strain rate loadings as a result of micro-inertia of cell walls. In this paper, the strain rate effect on the energy dissipation capacity of ALPORAS® foam was investigated experimentally by using a High Rate Instron Test System, with cross-head speed up to 10 m/s. The compressive tests were conducted over strain rates in the range of 1 × 10?3 to 2.2 × 102 s?1, with each test being at a fairly constant strain rate. An energy efficiency method was adopted to obtain the densification strain and plateau stress. The effect of strain rate and the foam density was well presented by empirical constitutive models. The experimental data were also discussed with reference to the recent results by other researchers but with different range of strain rates. An attempt has been made to qualitatively explain the observed decrease of densification strain with strain rate.  相似文献   

19.
开孔与闭孔泡沫铝的压缩力学行为   总被引:8,自引:0,他引:8  
康颖安  张俊彦 《材料导报》2005,19(8):122-124
研究了开孔与闭孔两种胞孔结构不同、制备工艺不同的泡沫铝在准静态压缩载荷下的压缩响应曲线.结果表明:开孔与闭孔泡沫铝压缩应力-应变曲线均具有多孔泡沫材料明显的三阶段特征,即线弹性段、塑性屈服平台段及致密段;相对密度对泡沫材料的力学性能(如杨氏模量、屈服强度)有很大影响;在准静态下,开孔泡沫铝表现出明显的应变率效应,而闭孔泡沫不如开孔敏感;泡沫铝材料表现为弱的各向异性;胞孔结构影响两种泡沫材料的压缩响应曲线.  相似文献   

20.
基体性能对泡沫铝力学行为的影响   总被引:7,自引:0,他引:7  
田杰  胡时胜 《工程力学》2006,23(8):168-171,176
用渗流法制备了不同基体的开孔泡沫铝,利用MTS810和SHPB研究了其准静态和动态力学性能。实验结果表明,泡沫铝基体的性能对泡沫铝材料的力学行为有显著的影响。准静态压缩时脆性泡沫有非常长而平缓的屈服平台区,韧性泡沫的屈服段的应力随着应变的增加而缓慢增加。脆性泡沫的吸能效果总体优于韧性泡沫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号