首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用过采空区的煤层气井抽采下伏煤层甲烷可以降低矿井瓦斯灾害风险、实现煤与煤层气共采,具有良好的应用前景。采空区下伏煤层应力分布是过采空区煤层气井开发效果的关键影响因素之一,而目前相关的研究鲜有报道。以山西晋城矿区寺河井田东区为例,基于地应力测试与压裂施工数据,分析了3号煤采空区下伏煤层应力、压裂工艺参数特征及采动井的产气效果。结果表明,研究区未采动的3号煤层应力为走滑断层应力机制,即最大水平主应力SHmax>垂直应力Sv>最小水平主应力Shmin,其向斜轴部存在应力集中,最小主应力及压裂施工压力高,破裂压力与施工压力之差较小;而3号煤的开采导致采空区下伏的9号、15号煤层的上覆荷载降低,3号煤层采空区下伏的9号、15号煤层水平应力与垂向应力之比高于未采动煤层;未采动井的破裂压力与施工压力之差为-4.9~11.7 MPa,平均值为2.14 MPa;采动井的破裂压力与施工压力之差为0.5~18.0 MPa,平均值为7.1 MPa;采动煤层的破裂压力与施工压力之差明显大于未采动煤层,采动煤层的破裂压力梯度高于未采动...  相似文献   

2.
下组煤煤层气超前预抽已成为煤矿区煤与煤层气共采的重要任务。以寺河井田为例,通过分析3号煤层采动卸压后下伏岩层应力分布、裂隙演化及渗透率变化规律,研究了通过地面抽采下煤组煤层气降低瓦斯含量的可行性,开展了下组煤地面煤层气抽采井位部署方法、钻井技术工艺及关键排采技术等研究。结果表明:下组煤15号煤层渗透率增加约2.20倍,有利于15号煤层进行地面煤层气预抽;根据煤层气开发工程要求,按照地面井下综合分析的方法,优化部署了穿煤柱下组煤水平井煤层气抽采井位,设计了三开钻井井身结构,优化了井眼轨迹设计及钻井轨迹控制技术,研究了不同钻井层段的钻井液体系、裂隙发育段堵漏及分级固井工艺等钻井技术;为有效减少L型水平井排采中管柱磨阻,采用“大井扶斜正+双保接箍防偏磨+导向器降扭矩”工艺。所实施的穿煤柱下组煤水平井,最高日产气量9522 m3,14个月内累计产气量220万m3,产气效果理想,证明了技术工艺的可行性。  相似文献   

3.
王森 《煤》2018,(6)
晋城矿区寺河矿采用下行开采顺序,3号煤层采空区下伏9号和15号煤层未进行有效的地面预抽。文章以寺河-5地面井过采空区预抽下伏煤层瓦斯钻井工艺应用研究为例,指出空气钻过采空区的安全隐患,提出二开过采空区采用氮气钻井工艺,取得了较好的效果,为类似工程提供有益参考。  相似文献   

4.
晋城寺河井区煤矿采空区煤层气地面抽采关键技术研究   总被引:2,自引:0,他引:2  
随着煤层气勘探的不断深入,煤矿采空区煤层气已成为煤矿区煤层气重要资源之一。基于晋城矿区寺河井区煤矿采空区分布特征,通过地质分析、采空区煤层气成分、浓度试验和资源量模型计算等方法系统研究了煤矿采空区煤层气资源条件及地面抽采关键技术,揭示了采空区煤层气赋存规律,给出了不同赋存状态下煤层气资源量计算模型和方法,探索了煤矿采空区煤层气地面抽采关键技术。研究表明,煤矿采空区煤层气来源于煤柱及残留煤层、邻近未采煤层和围岩中的游离气和吸附气。根据吸附气和游离气资源量计算模型计算寺河井区煤层气总资源为213.016×108m3,其中游离气资源为0.102×108m3,吸附气资源为212.914×108m3。采煤方法和采空区密闭性对采空区煤层气的来源和富集程度有重要影响。针对采空区上部岩体裂隙发育特征,将采空区煤层气抽采井身结构由二开优化为三开结构,实现了二开固井封闭断裂带上部含水层,三开下入割缝套管护壁,有效解决了采空区上部含水层涌水对钻井井身稳定性影响及抽采效果等问题。在此基础上,研发了潜孔锤+压缩空气(氮气)钻井工艺,用氮气取代空气作为循环介质,形成了安全揭露含气断裂带钻井工艺技术,为采空区煤层气安全抽采探索了有效途径。  相似文献   

5.
煤层气井单层与合层排采异同点及主控因素   总被引:13,自引:0,他引:13  
李国彪  李国富 《煤炭学报》2012,37(8):1354-1358
为了查明山西沁南地区煤层气井3号和15号煤层合层排采是否可行,根据煤层气垂直井产气特点,在系统分析煤层气垂直井合层排采的关键控制和影响因素基础上,得出产气液面高度、储层压力梯度、供液能力和渗透率的差异是影响两层煤合层排采的主控因素,并得出其合层排采的适合条件;根据沁南地区寺河矿区煤层气井勘探开发资料,从4个方面系统剖析了寺河矿区是否适合合层排采。研究结果表明:寺河矿区这些条件均满足,较适合合层排采。现场单层排采和两层煤合层排采的产气试验验证了理论分析的可靠性。  相似文献   

6.
碎软低渗煤层的煤层气高效抽采一直是制约我国煤层气产业化发展和煤矿瓦斯灾害防治的技术瓶颈。以安徽淮北矿区芦岭煤矿8号碎软低渗煤层为研究对象,通过开展现场调研、分析测试、理论分析、水力压裂物理模拟和数值模拟等工作,提出了碎软低渗煤层的煤层气顶板岩层水平井分段压裂高效抽采模式,揭示了该模式下水力压裂裂缝的扩展延伸规律及控制机理,构建了该模式实施的主要工艺流程。研究结果表明:顶板岩层相对脆性、裂缝扩展压力较高,碎软煤层相对塑性、裂缝扩展压力低。在顶板岩层水平井进行套管射孔和水力压裂,顶板岩层中产生的压裂裂缝,在垂向上向下扩展伸延并穿入碎软煤层;同时在水平方向上也快速扩展延伸,由此产生的牵引作用撕裂下部碎软煤层形成较长的压裂裂缝。数值模拟结果显示,在给定的压裂施工参数条件下,顶板岩层中压裂在碎软煤层中形成的压裂裂缝长度,是直接在碎软煤层中压裂形成的压裂裂缝长度的6.7倍。碎软煤层和顶板岩层中形成的这些压裂裂缝在后续加砂压裂过程中被充填,成为煤层气从下部煤层向顶板岩层水平井运移的导流通道。显然,采用这种抽采模式,碎软低渗煤层可以获得良好的压裂改造效果。研究成果应用于淮北矿区芦岭煤矿煤层气顶板岩层水平井抽采示范工程,取得了很好的产气效果,水平井单井曾连续3,6,12个月平均日产气量分别为10 358,9 039,7 921 m3,截至2017-11-16,已累计产气500万m3,日产气量仍在3 200 m3以上,创造了我国碎软低渗煤层的煤层气水平井气产量的新记录。  相似文献   

7.
目前,晋城矿区已经准备开采9#和15#煤层,因存在3#煤采空区对下组煤(9#、15#)的阻隔,需要钻井穿越采空区抽采下组煤层的瓦斯,但常规钻井技术不能满足过采空区钻进。就穿越采空区钻井的破碎带漏失、井塌和固井等问题进行了探讨,提出采用降低井筒中钻井液的动压力和提高破碎地层的承压能力做好钻井漏失处理,采用套管钻井防止井塌,采用低压易漏固井工艺处理固井问题,实践证明晋城矿区进行过采空区钻井抽采煤层气是可行的。  相似文献   

8.
结合和顺区块煤层气投产井地质条件、压裂效果及排采控制等特征,分析了影响该区煤层气排采的因素。结果表明构造复杂易造成压裂裂缝与断层沟通,干扰排采;生产煤层渗透率低、解吸压力低是该区煤层气排采的不利条件;15#煤层埋深较浅,产液量低影响煤层排水降压;压裂施工应控制裂缝形态,提高压裂效果,避开区域灰岩含水层对煤层越流补给;合理控制套压,缓慢控制流压,对扩大煤层气解吸范围,提高产气量十分重要。  相似文献   

9.
以寺河矿区穿越采空区氮气钻井试验为背景,通过分析煤层取心测试数据,指出钻井穿越3号煤层采空区抽采9+15号煤层瓦斯的必要性。利用"三带"理论明确了3号煤层采空区顶板以上74.4m及底板以下22.73m为钻井漏失带,采用氮气钻井穿越该层段有助于安全高效施工;优化了穿越采空区氮气钻井的三开井身结构;根据穿越采空区氮气钻井工艺需要,配套设计了地面钻井工艺流程。氮气钻井工艺在寺河矿区试验的成功,证明该工艺的可行性,对穿越采空区钻井技术的研究和推广应用具有重要的指导意义。  相似文献   

10.
本文通过建立近井地带煤层"洞穴模型",对煤层压裂过顶替数量进行了计算。在此基础上,编写压裂设计,现场进行了3口煤层气井过顶替压裂试验,并对3口井产气效果(见气时间、产气量、产气能力)进行了对比分析。实践证明:过顶替压裂井在解吸时间和产气量方面均优于常规顶替压裂井,煤层气井压裂应该过顶替。  相似文献   

11.
许耀波  郭盛强 《煤炭学报》2019,44(4):1169-1177
针对软硬煤复合煤层的煤层气抽采效率低、煤层纵向剖面上抽采不均衡等问题,为了实现大面积快速、整体高效抽采煤层气,以沁水盆地赵庄井田3号煤层为例,对软硬煤分层特征进行精细评价,优化了软硬煤复合煤层中的局部硬煤段,研究了硬煤层中不固井水平井分段压裂开发煤层气技术方法,在对水平井压裂裂缝扩展规律研究的基础上,研究了分段压裂水平井开发煤层气技术对策。研究结果表明:3号煤层软硬煤结构分层明显,软硬煤存在明显的自然伽马和电阻率测井响应特征;硬煤层中水平井压裂能形成一条复杂不规则的垂直裂缝,裂缝易于沿脆性较强的顶板岩层扩展延伸,裂缝能够扩展延伸进入软煤层,提高软硬煤的压裂增产效果;硬煤层中水平井位置和压裂施工排量是影响裂缝扩展效果的两个因素,压裂施工排量影响程度较大、水平井位置影响程度较小。针对这一特点,进一步研究了硬煤层中不固井水平井分段压裂开发煤层气4个关键技术:①水平井射孔、压裂段优选工艺技术;②油管拖动大排量水力喷射防窜流工艺技术;③"大排量、大规模、中砂比"的段塞式清水携砂压裂工艺技术;④气/水分井同步生产精细化排水采气技术。工程试验证明,该技术能大幅度提高煤层气水平井单井产量,突破了软硬煤复合煤层低产技术瓶颈,为软硬煤复合煤层的煤矿区煤层气抽采和瓦斯灾害治理提供了技术途径。  相似文献   

12.
贾波 《煤》2020,29(1):5-8
裂缝形态特征是储层压裂改造效果评价、压裂工程设计及优化、煤层气井井网布置及优化等的重要研究内容。为摸清寺河井田3号煤层气主力开发煤层人工压裂裂缝形态特征,对井田内微地震裂缝监测资料进行了研究。结果表明:浅埋深、厚煤层、中小型压裂规模及中小排量压裂情况下,裂缝长度171.3~284.2 m,平均219.7 m;裂缝高度13.3~16.5 m,平均14.9 m;裂缝方位为北东42.5~47.9°,平均45.9°;受煤的非均质性和应力状态影响,在压裂规模及压裂参数相近的情况下,各压裂井的裂缝形态特征有所不同。  相似文献   

13.
贵州煤炭资源量大,经长期开采,形成大面积采空区,采空区下伏煤层气资源量丰富,但开发利用率低。主要原因为贵州地区地面条件复杂、煤系地层纵向跨度大、煤层发育具有多薄等特点。在采空区钻井抽采上覆煤层卸压瓦斯及下伏煤层气时,采用常规钻井技术成井较为困难,易发生井下复杂事故,导致贵州地区对煤矿采空区内煤层气资源的开发利用较少。为了抽采采空区上覆煤层卸压瓦斯及充分利用采空区下伏煤层煤层气资源,探索多煤层采空后上覆煤岩层叠置“三带”在纵向发育特征及底鼓煤岩层应力变化规律就显得尤为重要。以贵州盘江矿区山脚树矿为例,实施1口过采空区多煤层定向试验井。结果表明:在贵州特殊地质条件下在煤矿采空区实施定向井抽采上覆煤层气卸压瓦斯及下伏煤层煤层气具有很好的经济性。同时通过该井的成功实施,首先探明了盘江矿区多煤层采空后“叠置”三带在纵向上的发育特征,其次成功获取了煤矿采空区下伏煤层煤层气抽采关键地质及工程技术参数,实现了采空区煤层气资源利用最大化,为后续在盘江矿区乃至整个贵州地区开展采空区瓦斯卸压抽采及下伏煤层煤层气开发提供了宝贵的工程经验和技术支撑。  相似文献   

14.
沁水盆地煤岩力学特征及其压裂裂缝的控制   总被引:2,自引:0,他引:2  
以沁水盆地煤层气水力压裂井为研究对象,结合实验室煤样测试分析资料和煤层气井实际压裂数据,深入分析了煤层气井压裂效果,并进一步阐明了研究区煤岩力学特征对煤层压裂裂缝的影响。结果表明:研究区煤岩体弹性模量在2~5 GPa,且煤岩体弹性模量越小,压开的裂缝宽度越大;随着裂缝宽度的增加,裂缝长度将受到限制,其长度50~70 m;在对研究区煤层压裂过程中,压裂裂缝均不同程度地延入煤层顶底板,裂缝高度9~20 m,最大时裂缝的高度超过压裂层厚度的4倍;煤层压裂裂缝的形态特征没有固定的深度界限。煤层压裂裂缝的形成除受地应力影响外,还受局部构造应力及先存裂隙的控制,存在着在某一方向裂缝出现概率相对较大的现象。  相似文献   

15.
分析了寺河矿二号井9号煤层“U”型通风系统综采工作面瓦斯涌出源,提出了邻近层顶板高位钻孔抽放、采空区埋管抽放、本煤层顺序抽放三种瓦斯综合治理方案,并阐述了各抽放技术的布置方式、技术参数、抽放效果.现场实用结果表明,采取上述瓦斯综合治理方案后,寺河矿二号井9号煤“U”型通风系统下综采工作面的上隅角瓦斯超限问题得到解决,确保了矿井的安全生产.  相似文献   

16.
赵学良 《煤矿安全》2019,(2):169-172
为提高煤层瓦斯抽采效率,达到加快煤巷掘进的目的,在寺河矿通过废弃预抽井与底板岩巷用耐高压管路连接地面大型压裂设备及井下穿层长钻孔,对煤层进行了2次压裂。第1次清水压裂钻孔煤层段长度102 m,第2次加砂压裂钻孔煤层段长度150 m,2次压裂排量达到了4 m3/min以上,表明井地联合一次性对百米以上煤层钻孔进行压裂技术可行,压裂液量623.25~998.67 m3。通过对整个压裂过程进行井地联合微震监测,得到压裂影响范围达到了80~258 m,压裂影响区域百米钻孔抽采量是未压裂区域5.22~7.01倍,平均抽采浓度提高了0.2~0.44倍。  相似文献   

17.
杨樱花  徐影  刘卫娟 《中州煤炭》2021,(10):128-135
以勘查区地质特征为基础,分析了煤层埋深、煤层厚度、煤层含气量、甲烷风化带、渗透率、煤体结构等煤层气赋存特征,为参数井与排采井设计提供了设计依据,根据井位部署原则,对参数+排采试验井进行了选位及选型,然后设计了钻井工程,煤层气抽采试验井采用大位移定向套管射孔完井,先进行直井钻井,一开下套管固井、二开钻穿煤层,然后三开进行定向井施工,钻穿煤层30 m完钻,下套管固井,水泥返至地面。并分析了井身结构、井身质量要求、钻井主要设备及钻具组合、钻井液方案及井控技术与煤储层保护要求。研究为煤层气区块的定量化排采提供技术支持。  相似文献   

18.
为实现高瓦斯和煤与瓦斯突出矿井受采动卸压影响的下伏煤层瓦斯抽采,以山西晋城矿区寺河煤矿3~#煤层5303工作面为研究对象,系统研究了3~#煤层采动卸压后下伏9~#煤层岩体的裂隙发育规律、应力分布特征和渗透性变化特性。数值模拟表明,工作面受采动影响垂向卸压范围可达71.43m,9~#煤层在底鼓变形带内,最大卸压值达到3.61MPa,使得该区域裂隙发育,渗透率提高。研究提出了一种煤矿瓦斯地面抽采新模式,即采用斜直井钻机地面施工L型井方式抽采经采动卸压的下伏煤层瓦斯,其研究成果对同类煤矿开采条件下高瓦斯和突出煤层瓦斯抽采工作具有重要指导借鉴意义。  相似文献   

19.
为了解决沁水盆地南部1 000 m以深的煤层气产量普遍较低的问题,以柿庄北区块为研究重点,采用对生产数据综合分析的方法,对深部煤层产气特征、排采变化规律、不同产量的典型井生产动态进行了研究,提出了深部煤层气产能的关键影响因素。研究结果表明:深部煤层气日产气量多小于500 m3,见气时间为16~178 d,单排3号煤层的井动液面较低,合排3号煤和15号煤的动液面较高,井底流压1.70~2.59 MPa;影响产能的因素包括地质、工程技术以及排采3个方面,地质因素主要为煤储层渗透率较低、3号煤与15号煤合采或部分井距断层较近导致产水量较大,工程因素主要是部分井压裂未形成有效通道导致甲烷气体无法渗流,排采因素主要是指排采过程中停机频繁等导致排采不连续影响产气量。  相似文献   

20.
吴静 《资源与产业》2018,20(4):52-55
沁水煤田是我国规模最大的煤层气资源开发利用区块,已进行了大量的煤层气勘探及开发工作,但是其中玉溪井田地面煤层气开发的相关研究较少。基于沁水煤田玉溪井田3号煤的储层地质特征,分析3号煤的含气性及煤层气赋存规律,研究其含气量与煤变质程度、煤厚、埋深、煤层顶底板、构造之间的关系,并采用数值模拟方法预测了地面压裂直井的产气量和采收率,评价了3号煤煤层气的地面抽采潜力。结果表明:玉溪井田构造简单,断层较少,煤层厚度较大,埋深适中,含气量较高,渗透性较好,吸附性强,储层地质条件较好;井田构造为一单斜,3号煤的顶底板岩性致密,有利于煤层气的富集储存;3号煤含气量随厚度、埋深和煤变质程度的增加而增大;预测垂直压裂井15年累计产气量为410.53×10^4 m^3,采收率达60%,且能将工作面含气量降至8 m^3/t以下,煤层气地面抽采潜力较大。研究成果可为玉溪井田的煤层气开发和瓦斯治理提供参考和借鉴。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号