首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
热解活化法制备高吸附性能椰壳活性炭   总被引:1,自引:1,他引:0  
以椰壳为原料,采用高温直接热解活化法制备高吸附性能活性炭。研究了活化温度、活化时间对活性炭吸附性能的影响。研究结果表明,活化温度为 900 ℃,热解活化时间为 8 h,升温速率为 10 ℃/min,制得碘吸附值为 1 628.54 mg/g,亚甲基蓝吸附值为 375 mg/g 的高吸附性能椰壳活性炭,得率为 9.41 %。氮气吸附实验结果表明,该活性炭比表面积 1 723 m2/g、总孔容积 0.87 cm3/g、微孔容积 0.68 cm3/g、中孔容积0.18 cm3/g、平均孔径 2.03 nm。热解活化制备的椰壳活性炭样品性能优于市售水蒸气法椰壳净水活性炭国家标准。  相似文献   

2.
采用低变质粉煤的成型热解KOH-HNO_3联合活化技术制备煤基电极材料(CEM),考察活化剂粉末直接添加方式和溶液浸渍添加方式对煤基电极材料结构及性能的影响,将两种添加方式所对应的两组实验分别记为P组和S组。采用扫描电子显微镜(SEM)、傅立叶红外光谱(FTIR)和N_2吸附法对煤基电极材料的微观形貌特征、表面官能团组成及孔隙结构、孔径分布进行分析表征,并对其电化学性能进行测试。结果表明:添加方式对材料收率及微孔率的影响表现在两个方面,在KOH添加量为5%~15%(质量分数)时,热解产物收率变化很小,P组实验生成CEM的微孔发育程度相对较好,在KOH添加量为20%时,P组实验生成CEM的酸化收率整体偏低,S组实验生成CEM的抗压强度和碘吸附值整体偏高,溶液浸渍方式更有利于微孔结构的发展;在P15试样和S15试样的电化学性能对比测试中,S15试样具有较大的比电容,内阻为2.05Ω,电荷转移电阻较低;KOH在浸渍阶段可先行与煤中含酸性官能团有机物发生降解反应,K~+优先进入煤料的大分子结构中,从煤料内部基质产生初级微孔结构,在后续热解过程中增强了活化效果,孔径分布和孔道布局更加合理,实现较高离子迁移效果;S20试样的抗压强度为3.96 MPa,碘吸附值为987 mg/g,微孔率可达87.62%,比表面积为487.21 m~2/g、总孔容为0.173 cm~3/g,微孔孔容为0.152 cm~3/g,平均孔径1.931 nm。  相似文献   

3.
石莼基微/中孔复合结构活性炭的制备及性能   总被引:1,自引:0,他引:1  
以海洋海藻废弃物石莼为原料,通过热解预炭化,KOH活化制备活性炭。以碘吸附值和亚甲基蓝吸附值为吸附性能评价指标,探究了活化工艺对活性炭吸附性能的影响。结果表明,当KOH与石莼半焦质量比(碱炭比)为3.0∶1.0、活化时间为45 min、活化温度为800℃时,活性炭吸附性能最优,其碘吸附值和亚甲基蓝吸附值最大,分别为1824.19 mg/g、914.98 mg/g。FTIR测试表明,活性炭含有大量羟基等官能团。SEM测试表明,活性炭表面粗糙、存在大量孔结构。活性炭的BET比表面积为2616.3 m2/g,Langmuir比表面积高达4883.5 m2/g,平均孔径为2.73 nm。石莼基活性炭的孔结构为微/中孔复合结构,有作为储能、环保材料的潜质。  相似文献   

4.
以快硬硫铝酸盐水泥和粉末活性炭为主要原料制备无机胶凝成型活性炭材料,通过对试样含炭量、碘吸附值和抗压强度测试确定最佳制备工艺条件.对比分析了在不同环境温度对材料苯吸附性能的影响.结果表明适宜的活性炭与水泥的质量比为3:2,必须在水中养护3d以上,此时试样碘吸附值477.52 mg/g,抗压强度6.61 MPa,碳含量47.48%,吸水率61.55%,气孔率56.89%,比表面积459.37 m2/g,平均孔径2.3884 nm,总孔容0.2743 m3/g.实验表明,试样对苯的吸附性能十分良好,试样对苯饱和吸附量为190.74 mg/g.循环再生试验结果初步表明,试样对苯的循环再生效果良好.  相似文献   

5.
以棉纺品废料为原材料,采用氯化铁为活化剂热解制备活性炭,基于响应曲面法考察质量比(氯化铁:棉纺品废料)、活化时间及活化温度及对活性炭得率及碘吸附值的影响。在质量比为1.7:1、活化时间为67 mim、活化温度为700℃的最优化制备工艺条件下,活性炭的得率和碘吸附值分别为36.02%和735.71 mg/g。SEM和BET的结果表明,活性炭表面孔道丰富,比表面积、总孔体积及平均孔径分别为800.23 m~2/g、0.46 cm~3以及2.32 nm。对Cr(VI)的吸附过程符合Langmuir吸附等温模型,为单层吸附,最大吸附量为204.08 mg/g,吸附性能优异。  相似文献   

6.
以神木烟煤为原料,煤沥青为黏结剂,在较低浸渍比下采用KOH和ZnCl_2活化法制备成型活性炭,利用低温(77 K)N_2吸附法对活性炭的比表面积及孔结构参数进行表征,考察浸渍比对活性炭孔结构的影响及其液相吸附性能,并对比分析两种化学活化法所制活性炭结构与性能的差异.结果表明,在相同浸渍比下,KOH活化法所制成型活性炭的比表面积、总孔容及碘吸附值均高于ZnCl_2活化法.当浸渍比为1.0时,采用KOH活化法可制备出表面积为811 m~2/g,总孔容为0.513 cm~3/g,中孔比例为23.6%,碘吸附值为1 125 mg/g的成型活性炭;采用ZnCl_2活化法可制备出表面积为472 m~2/g,总孔容为0.301 cm~3/g,中孔比例为30.6%,碘吸附值为527 mg/g的成型活性炭.两种活化法所制成型活性炭的孔径主要分布在1.2 nm~2.0 nm的微孔和3.6 nm~4.5 nm的中孔范围内.  相似文献   

7.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

8.
以3~6 mm兰炭粉末为原料,用物理法和物理化学法活化制备活性炭,重点研究了时间、温度、水蒸气用量、浸渍比和浸渍时间对成品碘吸附值的影响,并对成品做了性能表征。结果表明,物理活化法可制备出比表面积达463.26 m2/g的活性炭,其碘吸附值达768 mg/g,收率达为46.25%;物理化学法制备的活性炭比表面积为571.31 m2/g,碘吸附值达932 mg/g,收率41.88%。孔径分析结果表明,二者的孔径主要集中在3~8 nm,属中孔发达的活性炭。  相似文献   

9.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400 ℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

10.
以H_2O_2处理后的褐煤为碳源,在微波场条件下,利用KOH活化氧解褐煤(OC)制备多孔炭材料(PC)。在单因素实验基础上,使用响应曲面优化实验设计,分别考察微波功率、活化时间和活化剂与OC的质量比对PC碘吸附量的影响,建立响应值与影响因素的回归方程。结果表明:优化PC制备条件为微波功率430 W、活化时间14 min、活化剂与OC的质量比为3∶1;在此优化条件下制备出的PC对碘吸附量达到1 060.06 mg/g,与模型预测值1 068.43 mg/g接近,预测值与实验值相对误差仅为0.78%;利用扫描电子显微镜(SEM)和N_2等温吸脱附对PC进行表征,发现PC具有高孔隙率且孔径分布密集,比表面积达到1 129 m~2/g,总孔体积达到0.603 cm~3/g。  相似文献   

11.
利用柠条作为原材料,在350和600℃下进行热解制备生物炭,并对制备的柠条生物炭进行800℃水蒸气活化1 h处理得到柠条活性炭。使用热分析仪和傅里叶红外光谱仪分析了柠条活性炭的官能团组成以及炭化过程中的结构变化,探讨了热解机理。使用扫描电子显微镜和比表面及孔径分析仪观察和分析了活性炭的孔结构特征;采用碘吸附法研究了柠条活性炭的吸附性能。结果表明:柠条炭化过程中,半纤维素、纤维素和木质素在150~680℃较宽的温度范围内发生热解,并获得柠条生物炭。炭化的本质主要是打开长链醇羟基、烃基,获得结构简单的芳香族化合物。柠条在600℃炭化、800℃水蒸气活化后制备的活性炭保持了纤维组织的骨架结构,并具有大量的孔结构,以5 nm以下的孔结构为主,比表面积达到187 m2/g,碘吸附值可达221 mg/g,柠条是制备活性炭的理想材料。  相似文献   

12.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

13.
以粉状白酒糟物理活化炭为原料,以羧甲基纤维素(CMC)、煤焦油和酒糟活性炭灰分碱处理溶出液为粘结剂,研究了高含Si灰生物质粉末活性炭的成型方法. 结果表明,单独以CMC和煤焦油作为粘结剂,在4.0 MPa成型压力下所制成型活性炭的侧压强度达120 N/cm,但其碘吸附能力低于400 mg/g. 利用酒糟基活性炭灰碱处理溶出液,仅添加少量CMC成型的活性炭达到相同侧压强度,吸附能力达600 mg/g以上,明显高于仅添加CMC或煤焦油成型的活性炭,以及原活性炭粉. 对成型活性炭进行了红外光谱、XRD及SEM表征,分析了其粘结机理.  相似文献   

14.
Activated carbon samples were developed from coal samples obtained from a coal mine, rat (Zonguldak, Turkey) and anthracite (Siberia, Russia), applying pyrolysis in a temperature range of 600-900 ℃ under N2 flow, and activation using chemical agents such as KOH, NH4Cl, ZnCl2 at 650 ℃. Nitrogen adsorption at low temperature (77 K) was used to characterize the activated carbon samples, and their pore structure properties including pore volume, pore diameter and pore size distribution were determined by means ...  相似文献   

15.
武荣成  许世佩  许光文 《化工学报》2017,68(10):3892-3899
对比研究了神木煤和桦甸油页岩在150~400℃热预处理时的孔隙变化和挥发分析出规律以及热预处理对后续慢速升温热解反应产物的影响。结果表明,热预处理显著增加了油页岩的孔隙结构,其比表面积提高4倍、孔体积提高5倍以上,而神木煤的孔隙结构则减少了,特别是孔径大于1 nm的孔体积减少了近60%、比表面积减少了近80%,而其1 nm以下的孔则相对稳定,孔体积和比表面积分别只减少了10%左右。低于400℃时热预处理过程中除脱去吸附水外,其他挥发分也有一定析出,并以CO2为主,另有少量CO,但挥发分总失重量不超过5%。固定床慢速升温热解研究表明,经热预处理后,油页岩的油产率最高提高了22.7%,而水和气的产率则相应降低,气体中CH4增加而H2降低。热预处理对煤的热解油产率影响不明显,但热解水产率降低而热解气产率增加且其中CH4增多而H2降少。  相似文献   

16.
C/SiC aerogels with both ultra-low thermal conductivity and extremely high strength were fabricated by freeze casting. SiC junctions originated from pyrolysis of polycarbosilane (PCS) were formed between carbon nanofibers (Cf) to enhance the strength of aerogels. The effects of PCS content and total solid content on the phase composition, pore structure, thermal conductivity and compressive property were studied. The fabricated aerogels possess hierarchical pore structure. In the micro-scale, it contains circular pores with size of about 15 µm, while it is mesoporous and macroporous in the nano-scale. Both thermal conductivity and compressive strength increase with the increase in PCS content. Through tailoring PCS content and total solid content, Cf/SiC aerogels with porosity of 99.5%, thermal conductivity of 33 mW·m−1·K−1 and compressive strength of 7.14 MPa can be obtained. The specific strength of the fabricated Cf/SiC aerogels is up to 467.6 MPa/(g/cm3), which is the highest value for ceramic aerogels.  相似文献   

17.
张蒙蒙  陈雄木  李领肖  赵风清 《化工进展》2018,37(12):4773-4781
利用微波与碱液的协同作用脱除废菌渣中的含氮物质,脱氮后的滤渣用于制备活性炭,旨在减少氮氧化物排放,实现废菌渣的清洁化利用。分别以碘吸附值和亚甲基蓝吸附值为目标,采用响应面法(Box-Behnken)得到两种孔径活性炭的定向制备条件。①微孔活性炭:活化时间1h,活化温度425℃,ZnCl2质量分数20%,浸渍比1:3.85。产品的碘吸附值为884.76mg/g,平均孔径为1.83nm。②中孔活性炭:活化时间2h,活化温度600℃,ZnCl2质量分数30%,浸渍比1:4。产品的亚甲基蓝吸附值为448.65mg/g,平均孔径为3.15nm。利用扫描电镜、红外光谱等手段对活性炭结构进行表征,发现在活性炭表面形成了大量的表面官能团,包括羧基、羟基、内酯基等。  相似文献   

18.
杨晓霞  李晶  周安宁 《应用化工》2012,(8):1364-1367
以神府半焦为原料,通过水蒸气催化活化法制备了活性炭和氢气。考察了不同金属氧化物对活性炭吸附性能、活化过程中氢气产量的影响。结果表明,氧化物对活性炭吸附性能以及氢气产量影响很大。当氧化铁和氧化钙共同催化时,所制得的活性炭性能较好,氢气产量较大;活性炭碘吸附值为678 mg/g,亚甲基蓝值为55 mg/g,BET比表面积为775 m2/g,总孔容达0.414 8 cm3/g,平均孔径为3.902 nm,活化阶段氢气的产量为535 mmol/g半焦,约占活化过程释放气体总量的73.90%。  相似文献   

19.
以氯化锌浸渍的木屑为原料,黏土为粘结剂,制备炭陶复合吸附材料。讨论了炭化温度和保温时间对其吸附性能的影响,并对其孔隙结构进行了表征。结果表明,随温度和保温时间的增加,炭陶复合吸附材料的碘吸附值和亚甲基蓝吸附值呈先上升后下降的趋势;木屑受到活化作用形成活性炭而发生收缩,在活性炭和陶土之间形成空隙,有利于形成孔隙结构发达的炭陶复合吸附材料。在温度500℃、保温时间1 h的较佳工艺条件下,制得炭陶复合吸附材料的比表面积为809.5 m2/g,总孔容积为0.298 cm3/g,中孔容积为0.185 cm3/g,微孔容积为0.113 cm3/g,炭陶的含炭量为60.7%,碘吸附值为680.5 mg/g,亚甲基蓝吸附值为165.0 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号