首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以神木烟煤为原料,煤沥青为黏结剂,在较低浸渍比下采用KOH和ZnCl_2活化法制备成型活性炭,利用低温(77 K)N_2吸附法对活性炭的比表面积及孔结构参数进行表征,考察浸渍比对活性炭孔结构的影响及其液相吸附性能,并对比分析两种化学活化法所制活性炭结构与性能的差异.结果表明,在相同浸渍比下,KOH活化法所制成型活性炭的比表面积、总孔容及碘吸附值均高于ZnCl_2活化法.当浸渍比为1.0时,采用KOH活化法可制备出表面积为811 m~2/g,总孔容为0.513 cm~3/g,中孔比例为23.6%,碘吸附值为1 125 mg/g的成型活性炭;采用ZnCl_2活化法可制备出表面积为472 m~2/g,总孔容为0.301 cm~3/g,中孔比例为30.6%,碘吸附值为527 mg/g的成型活性炭.两种活化法所制成型活性炭的孔径主要分布在1.2 nm~2.0 nm的微孔和3.6 nm~4.5 nm的中孔范围内.  相似文献   

2.
采用低变质粉煤的成型热解KOH-HNO_3联合活化技术制备煤基电极材料(CEM),考察活化剂粉末直接添加方式和溶液浸渍添加方式对煤基电极材料结构及性能的影响,将两种添加方式所对应的两组实验分别记为P组和S组。采用扫描电子显微镜(SEM)、傅立叶红外光谱(FTIR)和N_2吸附法对煤基电极材料的微观形貌特征、表面官能团组成及孔隙结构、孔径分布进行分析表征,并对其电化学性能进行测试。结果表明:添加方式对材料收率及微孔率的影响表现在两个方面,在KOH添加量为5%~15%(质量分数)时,热解产物收率变化很小,P组实验生成CEM的微孔发育程度相对较好,在KOH添加量为20%时,P组实验生成CEM的酸化收率整体偏低,S组实验生成CEM的抗压强度和碘吸附值整体偏高,溶液浸渍方式更有利于微孔结构的发展;在P15试样和S15试样的电化学性能对比测试中,S15试样具有较大的比电容,内阻为2.05Ω,电荷转移电阻较低;KOH在浸渍阶段可先行与煤中含酸性官能团有机物发生降解反应,K~+优先进入煤料的大分子结构中,从煤料内部基质产生初级微孔结构,在后续热解过程中增强了活化效果,孔径分布和孔道布局更加合理,实现较高离子迁移效果;S20试样的抗压强度为3.96 MPa,碘吸附值为987 mg/g,微孔率可达87.62%,比表面积为487.21 m~2/g、总孔容为0.173 cm~3/g,微孔孔容为0.152 cm~3/g,平均孔径1.931 nm。  相似文献   

3.
将无烟煤与褐煤的混合物掺杂KOH一步法共热解,再将产物酸洗制得含硫活性炭。通过分析不同碱炭质量比对活性炭比表面积和微孔孔体积的作用,探究硫含量对活性炭CO_2吸附性能的影响。当混煤掺杂KOH在碱炭质量比为2∶1、活化温度为800℃、活化时间为2 h时,氮气气氛条件下制备煤基活性炭(AC-S1),并对其进行表征和CO_2吸附性能测试。结果表明:AC-S1的BET比表面积达到682.9 m~2/g,以微孔结构为主,孔径主要分布在0.4 nm~1.2 nm,微孔体积为0.24 cm~3/g,硫含量为0.89%(质量分数);红外光谱分析结果表明,煤基活性炭表面存在含硫官能团;扫描电镜结果表明,含硫煤基活性炭表面结构粗糙,存在一定的孔结构;X射线衍射结果表明,煤基活性炭为无定型非晶材料;X射线光电子能谱分析数据得出,煤基活性炭存在碳硫键和噻吩硫;在常压、298 K条件下,AC-S1的CO_2吸附量为3.16 mmol/g,对CO_2/CH_4体系的分离因子达到8.10。  相似文献   

4.
以石墨粉(G)为原料,采用改进Hummers法制备氧化石墨(GO),通过热剥离及氢氧化钾(KOH)活化制备出性能优异的类石墨烯多孔材料(GPM)。利用低温氮吸附、高压吸附、X射线衍射分析和拉曼光谱分析等测试手段对材料进行结构性能表征。结果表明,该材料具有类石墨烯结构,比表面积达2 465.76 m~2/g,孔容为1.53 cm~3/g,平均孔径为3.05 nm。在20℃、3 MPa下对CO_2、CH_4和N_2的饱和吸附容量分别达到33.13、11.45 mmol/g和7.80 mmol/g。对于CH_4/N_2、CH_4/CO_2、CO_2/N_2的分离性能有所差异,分离系数依次为2.86、1.93、5.54,显示其在碳捕集及甲烷存储等方面具有良好的应用前景。  相似文献   

5.
以废旧棉纺织品为原材料,K_2CO_3为活化剂,采用化学活化法制备棉纤基活性炭。选取活化温度、浸渍比、浸渍时间和活化时间为影响因子,探讨不同因素对活性炭碘吸附值和得率的影响,通过分析在不同条件下活性炭的比表面积及孔结构,确定棉纤基活性炭的最佳制备条件。结果表明:K_2CO_3活化法制备棉纤基活性炭的最佳条件为活化温度850℃、浸渍比1∶1、浸渍时间24 h、活化时间2 h;在该条件下,活性炭样品比表面积为1 697.38 m2/g,碘吸附值为1 637.47 mg/g,得率为14.15%;样品的中孔和微孔孔容分别为0.56 cm3/g和0.61 cm3/g。废旧棉织物可以制备出性能优良的活性炭,K_2CO_3活化法在优化棉纤基活性炭的制备工艺中是可行的。  相似文献   

6.
《应用化工》2017,(6):1078-1081
在室温下采用复分解法不添加控制剂,通过快速混合溶液制备出多孔碳酸钙微球,考察不同碳源、钙源和浓度体系对产物的影响。样品通过X-射线衍射、场发射扫描电子显微镜和比表面与孔隙分析仪进行表征。结果表明,在0.25 mol/L浓度条件下,采用Ca(CH_3COO)_2与(NH_4)_2CO_3溶液快速反应制备得多孔碳酸钙微球分散性好、粒度均匀,晶型为单一球霰石相,纯度较高;孔径主要分布在45 nm左右,比表面积达7.19 m~2/g。  相似文献   

7.
以煤为原料制备高比表面积活性炭的途径分析   总被引:7,自引:0,他引:7  
张双全 《炭素》1998,(1):32-39
通常,高比表面积活性炭主要是以沥青或沥青焦为原料,添加数倍量的KOH为活化剂采用化学活化法制备,本文从影响活性炭性能的主要因素出发,分析了以煤为原料制备高比表面积活性炭的可能途径是对原料煤进行深度脱灰处理,添加催化剂和氧化剂控制炭化过程并进行催化活化。  相似文献   

8.
采用活性碳纤维(ACFs)为原料,以KOH为化学活化剂,在ACFs:KOH的质量比为4∶1时,研究了不同活化温度下制备的多孔碳纤维的结构性能。用N2吸附仪测定多孔碳纤维的比表面积、孔容及孔径分布,通过变压吸附法研究了多孔碳纤维对CO_2的吸附性能,探讨了不同活化温度下对多孔碳纤维的孔隙结构及CO_2吸附量的影响。实验结果表明,活化温度对多孔碳材料的比表面积、孔径分布及孔容有良好的调控作用。当活化温度为900℃时,获得的多孔碳纤维有最大的比表面积(1702 m2/g)、最大孔容(0.902 cm3/g)及最大的CO_2吸附量(138 mg/g)。  相似文献   

9.
选取青霉素菌渣在微型流化床反应分析仪中进行了快速热解实验,研究了热解产物随温度的变化规律,并采用等转化率法和模型配合法对实验数据进行回归拟合,求算反应动力学参数,分析反应机理。结果表明:随热解温度升高,气体产量增加,焦炭产量减少,生物油的产量先增加后减少,在600℃左右时达到最大值,约为33.5%。而且温度的升高加快气体产物的转化速率,其中对CO和CH_4转化速率的影响要比H_2和CO_2明显。利用等温法求算出的气体产物(H_2、CH_4、CO_2和CO)的活化能平均值分别为20.88kJ/mol、39.81 kJ/mol、23.39kJ/mol和10.27kJ/mol,生成CH_4、H_2、CO_2、CO的难度依次下降;同一产物不同转化率下的活化能存在差异,表明不同反应阶段有不同的反应机理。热解过程中生成CH_4的反应符合1.5级化学反应,而H_2、CO和CO_2的生成符合2级化学反应。  相似文献   

10.
高比表面积煤质活性炭的制备与活化机理   总被引:5,自引:0,他引:5       下载免费PDF全文
王秀芳  田勇  张会平 《化工学报》2009,60(3):733-737
以煤为原料,采用KOH活化法制备了高比表面积活性炭,分别考察了活化温度、浸渍比和活化时间等工艺参数对活性炭吸附性能的影响;测试了高比表面积活性炭在-196℃对N2的吸附等温线、比表面积和孔径分布。结果表明,当活化工艺参数为活化温度900℃,浸渍比4,活化时间1.5 h的条件下可以制得较好的高比表面积活性炭产品,其比表面积为3135 m2·g-1,孔容为1.72 cm3·g-1,碘吸附值为2657 mg·g-1;采用扫描电子显微镜观察了高比表面积活性炭的微观结构,采用气体分析仪检测了活化过程中的尾气成分,提出了高比表面积活性炭的活化机理。  相似文献   

11.
将褐煤与石莼的混合物进行低温共热解,再将三相产物中的半焦通过KOH活化制备高性能活性炭材料,并探究活化工艺对活性炭吸附性能的影响。结果表明:褐煤中掺混质量分数为30%的石莼,为共热解最佳掺混比,并可共热解得到半焦。最佳工艺条件为:碱炭质量比3.0∶1、活化时间60min、活化温度800℃,此条件下活性炭的碘吸附值和亚甲基蓝吸附值均达到最大值,分别为1 701.64mg/g和699.61mg/g,吸附性能最优。活性炭的BET比表面积高达1 519.318 3m~2/g,微孔比表面积为1 240.491 3m~2/g,微孔结构发达,微孔孔径主要集中在0.4nm~1.2nm。FTIR检测结果表明,活性炭的表面官能团减少,—OH含量较高。SEM分析结果表明,活性炭表面十分粗糙,存在大量孔结构。  相似文献   

12.
采用H_2SO_4和ZnCl_2复合活化法,以脱水污泥和兰炭末为原料制备了污泥-兰炭末基成型活性炭,通过FTIR、BET及TG对产物进行了表征和性能测试,研究了pH值、固液比和吸附时间对其处理兰炭废水效果的影响,并进行了成型活性炭的再生性能测试。单因素和正交实验结果表明:影响成型活性炭碘吸附值的因素由大到小依次为活化温度活化时间浸渍比(污泥和兰炭末混合物质量与活化剂溶液体积比)。最佳制备工艺条件为活化温度750℃、活化时间2 h、浸渍比1∶2.5。制备的成型活性炭平均孔径约9 nm,比表面积约194 m~2/g,且结构中含有烷烃、芳烃等多种类型的烃类及醇和酚等含氧官能团。兰炭废水处理结果表明:当pH≈8、固液比(成型活性炭质量与兰炭废水体积比)1∶30、吸附时间32 h,氨氮去除率和色度去除率分别约为83%、42%,成型活性炭经5次再生后,碘吸附值和抗压强度分别降低了31%和62%。  相似文献   

13.
《化工科技》2021,29(1)
采用物理化学活化法处理干熄兰炭进一步制备活性炭,探究了活化剂选择、碱炭比、活化温度、活化时间对活性炭吸附维生素B_(12)溶液的影响,并且对最优条件下制备的活性炭进行SEM、BET、FIIR分析。研究表明,对比不同活化剂(ZnCl_2、H_3PO_4、KOH)饱和溶液浸渍后得到的活性炭吸附维生素B_(12)吸附量,KOH活化制备活性炭的吸附量远大于ZnCl_2和H_3PO_4,当采用饱和KOH溶液浸渍,m(碱)∶m(炭)=3∶1、活化温度为880℃、活化时间为110 min时制备的活性炭对维生素B_(12)溶液的吸附量最大,可达57.5 mg/g,其BET比表面积为1 157.2 m~2/g。经扫描电镜和孔径分布分析其微孔和中孔最为丰富,通过红外光谱可知最优条件下制备的活性炭的表面有—OH、CO、—COOH、C—H等基团,可为榆林干熄兰炭作为吸附材料的利用提供新的思路。  相似文献   

14.
以辣椒秸秆为原料、K_2CO_3为活化剂制备活性炭(AC),研究不同活化制度对AC制备工艺的影响。选取活化温度、活化时间、浸泡时间、K_2CO_3/炭化料比率和升温速率为影响因子,通过Plackett-Burman(P-B)设计筛选出主要因子,采用中心复合设计法(Central Composite Design,CCD)对其优化,得到样品比表面积和得率的预测模型,并验证和确定最佳制备工艺。利用扫描电子显微镜(SEM)和比表面积及孔径分析仪对样品的形貌和结构进行表征分析。结果表明:对AC比表面积和得率影响显著(P0.05)的活化因子依次为:活化温度活化时间升温速率;最佳工艺条件为活化温度835℃,活化时间1.95 h,升温速率4.5℃/min。在此条件下AC比表面积、得率分别为1648.30 m~2/g、34.29%,与预测值(1728.48 m~2/g、34.68%)的误差分别为4.63%(5%)、1.12%(5%),为辣椒秸秆的资源化利用提供参考。  相似文献   

15.
以淀粉为原料,使用水热法将其碳化后用活化剂KOH对其活化,制备了淀粉基多孔碳材料,并对其进行结构表征和CO_2/CH_4的吸附性能测试,计算吸附热以及材料对CO_2/CH_4的吸附选择性,讨论了碳材料结构对其吸附性能的影响。结果表明:在制备过程中,随着活化剂KOH用量比例的增大,所制得的材料其比表面积和孔容增大,其孔径分布也就越宽。所制得的碳材料其比表面积可达2972 m2·g-1。这些淀粉基多孔碳材料对水蒸气的吸附等温线呈现出Ⅳ类等温线。所制备材料对CO_2吸附容量主要取决于其孔径小于0.8 nm的累积孔容(Vd0.8 nm)。材料的超微孔的孔容越大,其对CO_2吸附容量也越大。所制备的C-KOH-1材料在101325 Pa和298 K条件下,对CO_2的吸附量达到4.2 mmol·g-1,其对CO_2的吸附热明显高于其对CH_4吸附热,其对CO_2/CH_4吸附选择性为3.7~4.26,同时本文通过对材料的水蒸气吸附等温线进行测试,结果表明所得材料主要表现为中等憎水性,这对材料在实际工况的应用奠定了基础。  相似文献   

16.
以废旧棉织物为原料,KOH为活化剂,利用化学活化法制备活性炭。采用XRD、SEM、元素分析仪、比表面积及孔径分析仪、FTIR等对所制备活性炭的结构与性能进行了分析与表征。结果表明:先炭化废旧棉织物,在m(炭化料)∶m(KOH)=1∶1,浸渍时间16 h,活化温度850℃,活化时间50 min的活化条件下,制备的活性炭比表面积为1 368.67 m~2/g,其中,微孔比表面积占BET比表面积的72.05%,总孔容为0.620 8 cm3/g,微孔孔容占总孔容的71.63%,微孔孔径主要分布在0.84~1.30 nm之间;活性炭呈中空纤维状,具有丰富的孔隙结构;碳质量分数高达90.43%;表面官能团主要为羧基、羰基、羟基等亲水性基团。废旧棉织物可作为制备活性炭的原料,所制活性炭性能优良。  相似文献   

17.
以废弃聚氯乙烯(PVC)塑料为原料,通过碳化-KOH活化法成功制备了具有较高吸附性能的聚氯乙烯活性炭(PVCC)。考察了碳化温度、KOH浸渍比和活化温度对PVCC孔隙结构及吸附性能的影响。研究结果表明:随着碳化温度、浸渍比及活化温度的升高,PVCC的碘吸附值均显示出先升高后下降的特点,最佳的制备条件为:500℃的碳化温度、3:1的浸渍比和750℃的活化温度。在最佳制备条件下,PVCC的碘吸附值达到627 mg/g。扫描电镜(SEM)表明,活化后的PVCC的表面出现数量较多、孔径不一的孔隙结构;氮气吸脱附试验表明活性炭的平均孔径为2.566 nm,比表面积达到732.5 m~2/g,且中孔孔容占总孔容的58.58%。  相似文献   

18.
以城市污泥为原料,通过尿素活化和两段式热解制备生物质活性炭。结果表明,污泥与尿素的固液比、第1段和第2段的热解温度对污泥活性炭比表面积有较大影响。当活化液中尿素质量分数为20%时,干污泥与尿素的质量比为1∶2,活化时间为24 h,在氮气保护控制第1段热解温度为550℃、停留时间2 h,第2段热解温度为650℃、停留时间1 h,经自然冷却并酸洗干燥后的活性炭样品的比表面积可达到325 m~2/g,高于未活化时相同工艺条件下所得到的炭样品(56 m~2/g)。通过对第1段和第2段热解产物的X-射线衍射和热重分析发现,尿素在活化阶段能迅速到达污泥表面并在1段热解时参与污泥碳化而形成类石墨结构的C3N4,在第2段升温时氮化碳分解为氨气和二氧化碳并从石墨晶区中释放,从而在污泥碳基表面形成孔穴。  相似文献   

19.
为研究高钙碳摩尔比对煤热解过程的影响特性,基于热重红外联用系统与固定床实验系统对宁夏烟煤开展了添加CaO吸收剂的煤热解实验。实验采用钙碳摩尔比分别为0,0.25,0.5与1,结果表明:CaO可显著改变煤失重及气态产物析出历程,添加CaO的热解DTG曲线在400℃与650℃存在失重峰,分别对应CaO水合产物Ca(OH)_2与碳酸化产物CaCO_3分解。此外CaO加入亦降低固态热解产物收率,同时促进热解过程CO,CH_4,H_2产出,并显著改变CO_2析出历程,当钙碳摩尔比由0增至1时,H_2产出增加5.21%,CO产出增加44.13%,CO_2降低17.80%,促进与抑制效果均与钙碳摩尔比成正比。  相似文献   

20.
高硫高灰煤脱灰脱硫预处理后采用KOH活化法制备活性炭.考察了碱炭比、活化温度、活化时间以及灰分、硫分含量和表面活性剂等对制备的活性炭吸附铜离子的影响.结果表明,在活化温度为820℃,活化时间为1.5h,碱炭比为2.5的条件下制得活性炭比表面积为1 004.5m2/g,铜离子去除率为67.8%;煤中灰分的脱除和添加表面活性剂有利于提高活性炭的吸附性能,但脱硫煤基活性炭吸附性能降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号