首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
在Fokker_P1anck方程的基础上,对超短脉冲激光烧蚀熔融硅的机理进行分析研究,建立了雪崩电离、多光子吸收电离导致的熔融硅烧蚀机理的数学模型.其计算得出的激光能量密度和临界烧蚀阀值与实验结果很好的吻合,定量解释了超短脉冲激光对熔融硅烧蚀损伤微观过程的影响.  相似文献   

2.
为了研究飞秒脉冲激光烧蚀血管支架材料的特性,利用考虑了电子之间热传导项的双温模型,采用有限差分法,对飞秒激光烧蚀NiTi合金的温度场分布进行数值模拟,计算得到了电子温度和晶格温度随时间和烧蚀深度的变化规律,进一步讨论了不同激光能量密度、不同激光脉宽、不同延迟时间对电子和晶格的温度场影响。发现血管支架材料在飞秒激光的作用下,先是电子吸收能量温度快速升高,再通过电声耦合作用将能量传递给晶格,最后两者的温度达到一个平衡状态;激光能量密度主要影响电子的峰值温度和电子与晶格的平衡温度;脉冲宽度主要影响电子的峰值温度和达到峰值温度所用的时间;电子温度随着延迟时间的增加先升高后降低,晶格温度随着延迟时间的增加不断上升。这些理论分析对实际飞秒激光加工血管支架有重要的指导意义。  相似文献   

3.
余艺平  王松  李伟 《无机材料学报》2017,32(12):1332-1336
采用DCP法制备了W/ZrC金属陶瓷, 然后研究了在不同激光能量和烧蚀时间下W/ZrC金属陶瓷的激光烧蚀行为。研究表明: W/ZrC金属陶瓷在激光烧蚀过程中产生了一个较小的烧蚀坑, 烧蚀坑的深度随着激光能量的增加和烧蚀时间的延长而增大。在烧蚀坑的周围, 许多不同种类和结构的氧化物堆积组成了几个同心环。铜的挥发和氧化锆层的形成对防止W/ZrC金属陶瓷进一步氧化有着重要作用。  相似文献   

4.
研究激光烧蚀对石英/氰酸酯复合材料电性能的影响并揭示其影响机制,对极度恶劣热环境条件下石英/氰酸酯复合材料透波性能评估分析、热防护设计等具有重要意义。利用激光作为外热流加载手段,对石英/氰酸酯复合材料进行激光辐照烧蚀实验,对实验前后的介电常数进行了测试。为分析介电常数变化机制,对石英/氰酸酯复合材料激光烧蚀前后的表面产物进行了透射红外光谱、XRD测试,对实验后的石英/氰酸酯复合材料表面进行微观形貌观察,并对氰酸酯和石英纤维进行了热失重测试。结果表明:与初始状态相比,激光烧蚀后的石英/氰酸酯复合材料在7~18 GHz范围内的介电常数为6左右,增大近1倍。分析认为激光烧蚀对石英/氰酸酯复合材料电性能的影响机制为:在激光辐照作用下,材料吸收激光能量升温,使氰酸酯树脂基体发生热分解、裂解等变化,在表面原位生成具有导电能力和岛链状态的炭黑物质,致使发生烧蚀炭化石英/氰酸酯复合材料的介电常数增大,将增强对雷达波的吸收。同时烧蚀形成的粗糙表面状态和疏松状态对电磁波的反射、散射作用增强,可进一步削弱石英/氰酸酯复合材料的雷达波透射能。  相似文献   

5.
通过实验研究了连续Nd:YAG激光辐照下碳纤维环氧树脂复合材料的质量烧蚀规律.结果表明:当激光功率密度大于10 kW/cm2时,材料烧蚀质量与激光辐照能量成正比关系;在同样激光辐照能量下,半径为0.65 mm的激光辐照引起的复合材料的质量烧蚀率比半径为5.5 mm的激光辐照的结果大一倍;激光功率在燃烧阈值附近时,燃烧现象引起质量烧蚀率的波动.  相似文献   

6.
采用DCP法制备了W/Zr C金属陶瓷,然后研究了在不同激光能量和烧蚀时间下W/Zr C金属陶瓷的激光烧蚀行为。研究表明:W/Zr C金属陶瓷在激光烧蚀过程中产生了一个较小的烧蚀坑,烧蚀坑的深度随着激光能量的增加和烧蚀时间的延长而增大。在烧蚀坑的周围,许多不同种类和结构的氧化物堆积组成了几个同心环。铜的挥发和氧化锆层的形成对防止W/Zr C金属陶瓷进一步氧化有着重要作用。  相似文献   

7.
《复合材料学报》2009,26(1):118-122
 通过实验研究了连续Nd:YAG激光辐照下碳纤维环氧树脂复合材料的质量烧蚀规律。结果表明:当激光功率密度大于 10 kW/cm2 时,材料烧蚀质量与激光辐照能量成正比关系;在同样激光辐照能量下,半径为0.65mm的激光辐照引起的复合材料的质量烧蚀率比半径为5.5mm的激光辐照的结果大一倍;激光功率在燃烧阈值附近时,燃烧现象引起质量烧蚀率的波动。  相似文献   

8.
在复合材料激光烧蚀研究中,首要解决的问题是激光的吸收问题。利用积分球法测量了材料蒙皮层及材料整体结构对1.319μm红外激光的反射率和透过率,获得了蒙皮层材料激光吸收特性随厚度的变化规律,以及材料表面状态变化导致的反射与透射特性的变化。在此基础上研究了蜂窝夹层材料激光烧蚀前后的反射、透射性能变化,结果表明,材料表面碳化后对近红外激光的反射率由30%降为10%左右,透过率由40%降为0,平均吸收率由30%增加到90%,蜂窝夹层材料对激光的吸收大大增加。  相似文献   

9.
为了解激光辐照对玻璃钢材料微波透射特性的影响,对激光照射后的样品进行了分析研究。通过红外谱分析了烧蚀样品的微观结构变化,用扫描电镜分析了损伤细观形貌,结合结构和物理性能的变化讨论了微波透射性能变化。结果表明,激光烧蚀会导致玻璃钢材料微观组分的变化、宏观结构的改变,形成烧蚀层、碳化层、热解层和原始层组成的多层结构。其中,碳化层、烧蚀层的微观构成发生了显著变化,形成了微波的散射和吸收机制,进而导致了微波传输性能下降。  相似文献   

10.
真空紫外辐射有高于共价键键能的光子能量,可在室温下激起化学反应。自上世纪80年代,基于稀有气体介质阻挡放电的准分子真空紫外光灯面世以来,真空紫外光源有了很大的发展,商业化的准分子真空紫外光灯已有上百mW/cm2的光能输出,品种也不断增加。准分子真空紫外光灯强大的激发化学反应的能力已在材料科学、化学反应工程、生物医学等方面开拓了许多新的研究课题,并得到日益增多的实际应用。近20年,每年关于准分子真空紫外辐射材料加工的研究报道急剧增加,本文将简要介绍DBD准分子紫外光源的特点及其在材料加工中的研究和应用,包括无机薄膜制备、半导体材料氧化、材料表面清洗、过渡金属化合物还原、高分子合成和聚合物表面改性。  相似文献   

11.
High-strength adhesive bonding of polymer composites can be achieved by treating surface with an excimer laser. A sheet molding compound (SMC) was used for the laser surface treatment for adhesive bonding. By subjecting the SMC surface to excimer laser source, the epoxy matrix was selectively removed by ablation, where upon the glass fibers stood exposed, without any inherent damage to their surface. The controllability is proved to be admirable by optimizing processing parameters. A significant improvement of the joint strength was found in the excimer laser treatment. The selective ablation of polymer matrix resulted in a maximized surface roughness, and an interlocking effect: of glass fibers at the joints. It is also possible that capillary effect draws the adhesive between the mating surfaces. This investigation shows that a high quality adhesive joint of polymer composites can be obtained from the excimer laser treatment.  相似文献   

12.
Nikolajeff F  Hård S  Curtis B 《Applied optics》1997,36(32):8481-8489
A diffractive beam homogenizer, based on an array of square, off-axis, continuous-relief diffractive microlenses, for use with an excimer laser has been studied. We originally fabricated the homogenizer by direct-write electron-beam lithography, from which we made replicas in UV-grade fused silica by hot embossing and reactive ion etching. Atomic force microscopy measurements of original and replicated elements showed the accuracy of the replication fidelity. One of the replicated homogenizers was evaluated together with a KrF excimer laser. The homogenized beam had a flat-top profile with 31% of the beam energy contained within an area where the beam intensity was above a threshold level of 90% of the maximum intensity.  相似文献   

13.
Nishii J  Yamanaka H 《Applied optics》1997,36(27):6852-6856
Photon-induced property changes of sputter-deposited GeO(2)-SiO(2) thin glass films were investigated. Irradiation with ArF laser pulses induced the changes in refractive index of -10% and volume of +30% in the film without ablation. A Bragg grating with a positive sinusoid wave pattern was printed upon the film by irradiation with ArF excimer laser pulses through a phase mask. The irradiated area could be quickly etched by a HF solution. The ratio of etching rate of irradiated area to unirradiated area was higher than 30. A Bragg grating with a surface relief pattern was successfully formed on the film by irradiation with excimer laser pulses followed by chemical etching. Diffraction efficiency of the gratings increased by 25 times with the etching.  相似文献   

14.
Laser processing of polycrystalline diamond and amorphous carbon films is shown to be a promising technology for micropatterning of these materials in electronics and other applications. By using excimer lasers, holes and pits have been formed in 10-60 μm thick diamond films by physical etching with ablation rates of up to 300 nm/pulse. The channels of micrometer scale width were created in diamond-like carbon films on silicon by chemical etching in oxygen by the scanning with a cw Ar+ laser beam. At laser powers below the etching threshold, a transformation of amorphous carbon to graphitic carbon allows the formation of conductive lines of different geometry in dielectric carbon layers.  相似文献   

15.
Abstract

We address the problem of shaping the intensity distribution of a highly directional partially coherent field, such as an excimer laser beam, by means of diffractive optics. Our theoretical analysis is based on modelling the multi-transverse-mode laser beam as a Gaussian Schell-model beam. It is shown numerically that a periodic element, which is unsuitable for the shaping of a coherent laser beam, works well with an excimer laser beam because of its partial spatial coherence. The conversion of an approximately Gaussian excimer laser beam into a flat-top beam in the Fourier plane of a lens is demonstrated with a diffractive beam shaper fabricated as a multilevel profile in SiOl by electron-beam lithography and proportional reactive-ion etching.  相似文献   

16.
Surface characterization of laser-ablated polymers used for microfluidics   总被引:5,自引:0,他引:5  
Fabrication of microfluidic devices by excimer laser ablation under different atmospheres may provide variations in polymer microchannel surface characteristics. The surface chemistry and electroosmotic (EO) mobility of polymer microchannels laser ablated under different atmospheres were studied by X-ray photoelectron spectroscopy and current monitoring mobility measurements, respectively. The ablated surfaces of PMMA were very similar to the native material, regardless of ablation atmospheres due to the negligible absorption of 248-nm light by that polymer. The substrates studied that exhibit nonnegligible absorption at this energy, namely, poly(ethylene terephthalate glycol), poly(vinyl chloride), and poly(carbonate), showed significant changes in surface chemistry and EO mobility when the ablation atmospheres were varied. Ablation of these three polymer substrates under nitrogen or argon resulted in low EO mobilities with a loss of the well-defined chemical structures of the native surfaces, while ablation under oxygen yielded surfaces that retained native chemical structures and supported higher EO mobilities.  相似文献   

17.
The laser induced etching of semi-insulating GaAs 〈100〉 is carried out to create porous structure under super- and sub-bandgap photon illumination (h v). The etching mechanism is different for these separate illuminations where defect states play the key role in making distinction between these two processes. Separate models are proposed for both the cases to explain the etching efficiency. It is observed that under sub-bandgap photon illumination the etching process starts vigorously through the mediation of intermediate defect states. The defect states initiate the pits formation and subsequently pore propagation occurs due to asymmetric electric field in the pore. Formation of GaAs nanostructures is observed using scanning electron (SEM) and atomic force microscopy (AFM).  相似文献   

18.
Stable, uniform and cross-linked silicone films have been synthesized by pulsed laser ablation deposition (PLAD) for the first time. A KrF excimer (248 nm) laser was used in the synthesis. The effect of incident energy density on the deposited film chemistry was examined in depth. The surface analysis showed that at low energy densities (100–150 mJ/cm2), smooth, hydrophobic films similar in structure to the starting cross-linked silicone elastomer were obtained. Beyond 200 mJ/cm2, hydrophilic films with oxygen contents much higher than the starting polymer were obtained. These films also exhibited a more particulate texture suggesting ablation of particles and/or polymeric clusters from the silicone target. The results demonstrate that the PLAD process may prove valuable for the preparation of cross-linked silicone thin films with tailored properties. Received: 27 June 2001 / Accepted: 17 July 2001  相似文献   

19.
We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young''s moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号