首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Traditional multivariate clustering approaches are common in many geovisualization applications. These algorithms are used to define geodemographic profiles, ecosystems and various other land use patterns that are based on multivariate measures. Cluster labels are then projected onto a choropleth map to enable analysts to explore spatial dependencies and heterogeneity within the multivariate attributes. However, local variations in the data and choices of clustering parameters can greatly impact the resultant visualization. In this work, we develop a visual analytics framework for exploring and comparing the impact of geographical variations for multivariate clustering. Our framework employs a variety of graphical configurations and summary statistics to explore the spatial extents of clustering. It also allows users to discover patterns that can be concealed by traditional global clustering via several interactive visualization techniques including a novel drag & drop clustering difference view. We demonstrate the applicability of our framework over a demographics dataset containing quick facts about counties in the continental United States and demonstrate the need for analytical tools that can enable users to explore and compare clustering results over varying geographical features and scales.  相似文献   

2.
面对大数据的挑战,力图将人的推理能力和计算系统的数据处理能力相结合的交 互式可视分析研究变得愈发重要。然而目前仍缺乏有效的认知理论来指导面向复杂信息的可视 分析系统的设计,诸如意义构建等现有的理论框架通常着眼于分析行为的外在特征,未能对此 类行为的内在认知机理进行深入研究。因此提出将问题求解作为一种理论框架来解释交互可视 分析行为的基本认知活动,并建议从非良构问题的角度来描述可视分析过程中用户所面临的主 要挑战,还从问题表征及问题求解策略等角度分析了可视分析系统对分析行为的影响。本研究 在理论上,将认知心理学领域的问题求解理论引入到交互可视分析行为的研究中,该方法对设 计面向复杂信息分析的其他类型交互系统也有启示作用;在实践层面上,从问题求解的支持角 度探索了可视分析系统的设计和评估问题。  相似文献   

3.
It remains challenging for information visualization novices to rapidly construct visualizations during exploratory data analysis. We conducted an exploratory laboratory study in which information visualization novices explored fictitious sales data by communicating visualization specifications to a human mediator, who rapidly constructed the visualizations using commercial visualization software. We found that three activities were central to the iterative visualization construction process: data attribute selection, visual template selection, and visual mapping specification. The major barriers faced by the participants were translating questions into data attributes, designing visual mappings, and interpreting the visualizations. Partial specification was common, and the participants used simple heuristics and preferred visualizations they were already familiar with, such as bar, line and pie charts. We derived abstract models from our observations that describe barriers in the data exploration process and uncovered how information visualization novices think about visualization specifications. Our findings support the need for tools that suggest potential visualizations and support iterative refinement, that provide explanations and help with learning, and that are tightly integrated into tool support for the overall visual analytics process.  相似文献   

4.
People are becoming increasingly sophisticated in their ability to navigate information spaces using search, hyperlinks, and visualization. But, mobile phones preclude the use of multiple coordinated views that have proven effective in the desktop environment (e.g., for business intelligence or visual analytics). In this work, we propose to model information as multivariate heterogeneous networks to enable greater analytic expression for a range of sensemaking tasks while suggesting a new, list-based paradigm with gestural navigation of structured information spaces on mobile phones. We also present a mobile application, called Orchard, which combines ideas from both faceted search and interactive network exploration in a visual query language to allow users to collect facets of interest during exploratory navigation. Our study showed that users could collect and combine these facets with Orchard, specifying network queries and projections that would only have been possible previously using complex data tools or custom data science.  相似文献   

5.
The Network for Computational Nanotechnology (NCN) has developed a science gateway at nanoHUB.org for nanotechnology education and research. Remote users can browse through online seminars and courses, and launch sophisticated nanotechnology simulation tools, all within their web browser. Simulations are supported by a middleware that can route complex jobs to grid supercomputing resources. But what is truly unique about the middleware is the way that it uses hardware accelerated graphics to support both problem setup and result visualization. This paper describes the design and integration of a remote visualization framework into the nanoHUB for interactive visual analytics of nanotechnology simulations. Our services flexibly handle a variety of nanoscience simulations, render them utilizing graphics hardware acceleration in a scalable manner, and deliver them seamlessly through the middleware to the user. Rendering is done only on-demand, as needed, so each graphics hardware unit can simultaneously support many user sessions. Additionally, a novel node distribution scheme further improves our system's scalability. Our approach is not only efficient but also cost-effective. Only a half-dozen render nodes are anticipated to support hundreds of active tool sessions on the nanoHUB. Moreover, this architecture and visual analytics environment provides capabilities that can serve many areas of scientific simulation and analysis beyond nanotechnology with its ability to interactively analyze and visualize multivariate scalar and vector fields.  相似文献   

6.
The ever-growing time-varying climate datasets pose challenges for efficient analytics using the current desktop-based or generic remote visualization tools. We present a tightly-coupled scalable cloud-enabled remote visualization tool that exploits the computational capabilities of Graphical Processing Units (GPUs). We implement three typical volumetric/3D visualization techniques to illustrate the enhanced performance offered by remote GPU clusters. Our development also enables fast deployment to facilitate the access of remote analytics tools by a wide range of end users.  相似文献   

7.
The analysis of ocean and atmospheric datasets offers a unique set of challenges to scientists working in different application areas. These challenges include dealing with extremely large volumes of multidimensional data, supporting interactive visual analysis, ensembles exploration and visualization, exploring model sensitivities to inputs, mesoscale ocean features analysis, predictive analytics, heterogeneity and complexity of observational data, representing uncertainty, and many more. Researchers across disciplines collaborate to address such challenges, which led to significant research and development advances in ocean and atmospheric sciences, and also in several relevant areas such as visualization and visual analytics, big data analytics, machine learning and statistics. In this report, we perform an extensive survey of research advances in the visual analysis of ocean and atmospheric datasets. First, we survey the task requirements by conducting interviews with researchers, domain experts, and end users working with these datasets on a spectrum of analytics problems in the domain of ocean and atmospheric sciences. We then discuss existing models and frameworks related to data analysis, sense‐making, and knowledge discovery for visual analytics applications. We categorize the techniques, systems, and tools presented in the literature based on the taxonomies of task requirements, interaction methods, visualization techniques, machine learning and statistical methods, evaluation methods, data types, data dimensions and size, spatial scale and application areas. We then evaluate the task requirements identified based on our interviews with domain experts in the context of categorized research based on our taxonomies, and existing models and frameworks of visual analytics to determine the extent to which they fulfill these task requirements, and identify the gaps in current research. In the last part of this report, we summarize the trends, challenges, and opportunities for future research in this area. (see http://www.acm.org/about/class/class/2012 )  相似文献   

8.
Project schedules are effectively represented by Gantt charts, but comparing multiple versions of a schedule is difficult. To compare versions with current methods, users must search and navigate through multiple large documents, making it difficult to identify differences. We present two novel visualization techniques to support the comparison of Gantt charts. First, we encode two Gantt charts in one view by overlapping them to show differences. Second, we designed an interactive visual technique, the 'TbarView', that allows users to compare multiple schedules within one single view. We evaluated the overlap and TbarView techniques via a user study. The study results showed that our design provided a quick overview of the variances among two or more schedules, and the techniques also improved efficiency by minimizing view switching. Our visual techniques for schedule comparison could be combined with other resource analysis tools to help project teams identify and resolve errors and problems in project schedules.  相似文献   

9.
An insight-based longitudinal study of visual analytics   总被引:1,自引:0,他引:1  
Visualization tools are typically evaluated in controlled studies that observe the short-term usage of these tools by participants on preselected data sets and benchmark tasks. Though such studies provide useful suggestions, they miss the long-term usage of the tools. A longitudinal study of a bioinformatics data set analysis is reported here. The main focus of this work is to capture the entire analysts process that an analyst goes through from a raw data set to the insights sought from the data. The study provides interesting observations about the use of visual representations and interaction mechanisms provided by the tools, and also about the process of insight generation in general. This deepens our understanding of visual analytics, guides visualization developers in creating more effective visualization tools in terms of user requirements, and guides evaluators in designing future studies that are more representative of insights sought by users from their data sets  相似文献   

10.
Event sequences and time series are widely recorded in many application domains; examples are stock market prices, electronic health records, server operation and performance logs. Common goals for recording are monitoring, root cause analysis and predictive analytics. Current analysis methods generally focus on the exploration of either event sequences or time series. However, deeper insights are gained by combining both. We present a visual analytics approach where users can explore both time series and event data simultaneously, combining visualization, automated methods and human interaction. We enable users to iteratively refine the visualization. Correlations between event sequences and time series can be found by means of an interactive algorithm, which also computes the presence of monotonic effects. We illustrate the effectiveness of our method by applying it to real world and synthetic data sets.  相似文献   

11.
Interactive visualization tools are being used by an increasing number of members of the general public; however, little is known about how, and how well, people use visualizations to infer causality. Adapted from the mediation causal model, we designed an analytic framework to systematically evaluate human performance, strategies, and pitfalls in a visual causal reasoning task. We recruited 24 participants and asked them to identify the mediators in a fictitious dataset using bar charts and scatter plots within our visualization interface. The results showed that the accuracy of their responses as to whether a variable is a mediator significantly decreased when a confounding variable directly influenced the variable being analyzed. Further analysis demonstrated how individual visualization exploration strategies and interfaces might influence reasoning performance. We also identified common strategies and pitfalls in their causal reasoning processes. Design implications for how future visual analytics tools can be designed to better support causal inference are discussed.  相似文献   

12.
Cognitive biases are systematic errors in judgment due to an over‐reliance on rule‐of‐thumb heuristics. Recent research suggests that cognitive biases, like numerical anchoring, transfers to visual analytics in the form of visual anchoring. However, it is unclear how visualization users can be visually anchored and how the anchors affect decision‐making. To investigate, we performed a between‐subjects laboratory experiment with 94 participants to analyze the effects of visual anchors and strategy cues using a visual analytics system. The decision‐making task was to identify misinformation from Twitter news accounts. Participants were randomly assigned to conditions that modified the scenario video (visual anchor) and/or strategy cues provided. Our findings suggest that such interventions affect user activity, speed, confidence, and, under certain circumstances, accuracy. We discuss implications of our results on the forking paths problem and raise concerns on how visualization researchers train users to avoid unintentionally anchoring users and affecting the end result.  相似文献   

13.
Pre‐processing is a prerequisite to conduct effective and efficient downstream data analysis. Pre‐processing pipelines often require multiple routines to address data quality challenges and to bring the data into a usable form. For both the construction and the refinement of pre‐processing pipelines, human‐in‐the‐loop approaches are highly beneficial. This particularly applies to multivariate time series, a complex data type with multiple values developing over time. Due to the high specificity of this domain, it has not been subject to in‐depth research in visual analytics. We present a visual‐interactive approach for preprocessing multivariate time series data with the following aspects. Our approach supports analysts to carry out six core analysis tasks related to pre‐processing of multivariate time series. To support these tasks, we identify requirements to baseline toolkits that may help practitioners in their choice. We characterize the space of visualization designs for uncertainty‐aware pre‐processing and justify our decisions. Two usage scenarios demonstrate applicability of our approach, design choices, and uncertainty visualizations for the six analysis tasks. This work is one step towards strengthening the visual analytics support for data pre‐processing in general and for uncertainty‐aware pre‐processing of multivariate time series in particular.  相似文献   

14.
Predictive analytics embraces an extensive range of techniques including statistical modeling, machine learning, and data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline. Primary uses have been in data cleaning, exploratory analysis, and diagnostics. For example, scatterplots and bar charts are used to illustrate class distributions and responses. More recently, extensive visual analytics systems for feature selection, incremental learning, and various prediction tasks have been proposed to support the growing use of complex models, agent‐specific optimization, and comprehensive model comparison and result exploration. Such work is being driven by advances in interactive machine learning and the desire of end‐users to understand and engage with the modeling process. In this state‐of‐the‐art report, we catalogue recent advances in the visualization community for supporting predictive analytics. First, we define the scope of predictive analytics discussed in this article and describe how visual analytics can support predictive analytics tasks in a predictive visual analytics (PVA) pipeline. We then survey the literature and categorize the research with respect to the proposed PVA pipeline. Systems and techniques are evaluated in terms of their supported interactions, and interactions specific to predictive analytics are discussed. We end this report with a discussion of challenges and opportunities for future research in predictive visual analytics.  相似文献   

15.
VISMiner:一个交互式可视化数据挖掘原型系统   总被引:6,自引:0,他引:6  
交互式可视化数据挖掘是利用可视化技术进行联机数据挖掘的技术。基于SOM的交互式可视化数据挖掘原型系统VISMiner的主要目的是将数据挖掘与数据可视化及OLAP进行集成,允许用户以交互的方式从SOM的标记图或距离图中选定感兴趣区域加以深入分析。  相似文献   

16.
Co-located collaboration can be extremely valuable during complex visual analytics tasks. We present an exploratory study of a system designed to support collaborative visual analysis tasks on a digital tabletop display. Fifteen participant pairs employed Cambiera, a visual analytics system, to solve a problem involving 240 digital documents. Our analysis, supported by observations, system logs, questionnaires, and interview data, explores how pairs approached the problem around the table. We contribute a unique, rich understanding of how users worked together around the table and identify eight types of collaboration styles that can be used to identify how closely people work together while problem solving. We show how the closeness of teams’ collaboration and communication influenced how they performed on the task overall. We further discuss the role of the tabletop for visual analytics tasks and derive design implications for future co-located collaborative tabletop problem solving systems.  相似文献   

17.
Building effective classifiers requires providing the modeling algorithms with information about the training data and modeling goals in order to create a model that makes proper tradeoffs. Machine learning algorithms allow for flexible specification of such meta-information through the design of the objective functions that they solve. However, such objective functions are hard for users to specify as they are a specific mathematical formulation of their intents. In this paper, we present an approach that allows users to generate objective functions for classification problems through an interactive visual interface. Our approach adopts a semantic interaction design in that user interactions over data elements in the visualization are translated into objective function terms. The generated objective functions are solved by a machine learning solver that provides candidate models, which can be inspected by the user, and used to suggest refinements to the specifications. We demonstrate a visual analytics system QUESTO for users to manipulate objective functions to define domain-specific constraints. Through a user study we show that QUESTO helps users create various objective functions that satisfy their goals.  相似文献   

18.
For many software projects, keeping requirements on track needs an effective and efficient path from data to decision. Visual analytics creates such a path that enables the human to extract insights by interacting with the relevant information. While various requirements visualization techniques exist, few have produced end-to-end value to practitioners. In this paper, we advance the literature on visual requirements analytics by characterizing its key components and relationships in a framework. We follow the goal–question–metric paradigm to define the framework by teasing out five conceptual goals (user, data, model, visualization, and knowledge), their specific operationalizations, and their interconnections. The framework allows us to not only assess existing approaches, but also create tool enhancements in a principled manner. We evaluate our enhanced tool support through a case study where massive, heterogeneous, and dynamic requirements are processed, visualized, and analyzed. Working together with practitioners on a contemporary software project within its real-life context leads to the main finding that visual analytics can help tackle both open-ended visual exploration tasks and well-structured visual exploitation tasks in requirements engineering. In addition, the study helps the practitioners to reach actionable decisions in a wide range of areas relating to their project, ranging from theme and outlier identification, over requirements tracing, to risk assessment. Overall, our work illuminates how the data-to-decision analytical capabilities could be improved by the increased interactivity of requirements visualization.  相似文献   

19.
Data summarization allows analysts to explore datasets that may be too complex or too large to visualize in detail. Designers face a number of design and implementation choices when using summarization in visual analytics systems. While these choices influence the utility of the resulting system, there are no clear guidelines for the use of these summarization techniques. In this paper, we codify summarization use in existing systems to identify key factors in the design of summary visualizations. We use quantitative content analysis to systematically survey examples of visual analytics systems and enumerate the use of these design factors in data summarization. Through this analysis, we expose the relationship between design considerations, strategies for data summarization in visualization systems, and how different summarization methods influence the analyses supported by systems. We use these results to synthesize common patterns in real‐world use of summary visualizations and highlight open challenges and opportunities that these patterns offer for designing effective systems. This work provides a more principled understanding of design practices for summary visualization and offers insight into underutilized approaches.  相似文献   

20.
While information visualization technologies have transformed our life and work, designing information visualization systems still faces challenges. Non-expert users or end-users need toolkits that allow for rapid design and prototyping, along with supporting unified data structures suitable for different data types (e.g., tree, network, temporal, and multi-dimensional data), various visualization, interaction tasks. To address these issues, we designed DaisyViz, a model-based user interface toolkit, which enables end-users to rapidly develop domain-specific information visualization applications without traditional programming. DaisyViz is based on a user interface model for information (UIMI), which includes three declarative models: data model, visualization model, and control model. In the development process, a user first constructs a UIMI with interactive visual tools. The results of the UIMI are then parsed to generate a prototype system automatically. In this paper, we discuss the concept of UIMI, describe the architecture of DaisyViz, and show how to use DaisyViz to build an information visualization system. We also present a usability study of DaisyViz we conducted. Our findings indicate DaisyViz is an effective toolkit to help end-users build interactive information visualization systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号