首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《植物生态学报》2021,44(11):1127
碳利用效率(CUE)是植被生态系统的一个重要功能参数, 反映了植被生态系统的固碳能力, 适用于分析不同时间段内器官、个体和群落等不同层次的碳收支趋势, 因而有助于对陆地生态系统碳功能的确定与预测, 引起了广泛关注。该研究采用生物计量法, 测定和计算了川西贡嘎山东坡峨眉冷杉(Abies fabri)成熟林树木不同器官的呼吸与净生产力动态, 分析了乔木层及其各器官CUE动态及主要影响因子, 并估算了乔木层不同径级树木CUE。主要结果: (1)乔木层各器官月呼吸速率与温度呈正相关关系, 以细根月呼吸速率为最大; 不同径级树木年呼吸量无显著差异, 以小径级树木树干的年呼吸量为最小。(2)乔木层细根和树干月净初级生产力(NPP)均随温度增加而增加, 以细根月NPP为最大。小径级树木年NPP最大, 其针叶年NPP也显著高于中径级和大径级树木。(3)林分乔木层及其各器官CUE大多集中在0.30-0.60之间, 其中细根、树干CUE具有相似的月变化动态, 均随温度的升高而上升。不同径级树木CUE及树干和针叶CUE均随树木个体的增大而明显下降。(4)气温和土壤温度与乔木层树干和细根CUE呈正相关关系, 而降水量与针叶CUE呈负相关关系。细根CUE与树干CUE呈正相关关系,与针叶CUE呈负相关关系。峨眉冷杉成熟林乔木层CUE主要取决于树干和细根CUE。该研究证实了川西亚高山暗针叶成熟林仍具有较强的碳汇功能, 在区域碳储存和森林生态系统碳循环中发挥着极其重要的作用。  相似文献   

2.
碳利用效率(CUE)是植被生态系统的一个重要功能参数, 反映了植被生态系统的固碳能力, 适用于分析不同时间段内器官、个体和群落等不同层次的碳收支趋势, 因而有助于对陆地生态系统碳功能的确定与预测, 引起了广泛关注。该研究采用生物计量法, 测定和计算了川西贡嘎山东坡峨眉冷杉(Abies fabri)成熟林树木不同器官的呼吸与净生产力动态, 分析了乔木层及其各器官CUE动态及主要影响因子, 并估算了乔木层不同径级树木CUE。主要结果: (1)乔木层各器官月呼吸速率与温度呈正相关关系, 以细根月呼吸速率为最大; 不同径级树木年呼吸量无显著差异, 以小径级树木树干的年呼吸量为最小。(2)乔木层细根和树干月净初级生产力(NPP)均随温度增加而增加, 以细根月NPP为最大。小径级树木年NPP最大, 其针叶年NPP也显著高于中径级和大径级树木。(3)林分乔木层及其各器官CUE大多集中在0.30-0.60之间, 其中细根、树干CUE具有相似的月变化动态, 均随温度的升高而上升。不同径级树木CUE及树干和针叶CUE均随树木个体的增大而明显下降。(4)气温和土壤温度与乔木层树干和细根CUE呈正相关关系, 而降水量与针叶CUE呈负相关关系。细根CUE与树干CUE呈正相关关系,与针叶CUE呈负相关关系。峨眉冷杉成熟林乔木层CUE主要取决于树干和细根CUE。该研究证实了川西亚高山暗针叶成熟林仍具有较强的碳汇功能, 在区域碳储存和森林生态系统碳循环中发挥着极其重要的作用。  相似文献   

3.
《植物生态学报》2016,40(4):354
Aims
The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China.
Methods
By using the 8th forest resource inventory data and 2011-2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province.
Important findings
The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t·hm-2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t·hm-2, 3.36 t·hm-2, 2.28 t·hm-2 and 90.51 t·hm-2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   

4.
《植物生态学报》2016,40(7):643
Aims Subtropical forest ecosystem has great carbon sequestration capacity. Net primary productivity (NPP) plays a critical role in forest carbon cycle and is affected by a number of factors, including climate change, atmospheric composition, forest disturbance intensity and frequency, and forest age, etc. However, the contribution of these factors to the temporal-spatial dynamics of NPP is still not clear. Quantifying the main driving forces on the temporal-spatial dynamics of NPP for subtropical forest ecosystems is a critical foundation for understanding their carbon cycle.
Methods We utilized multi-sources dataset, including observed meteorological data, inversed annual maximum leaf area index (LAI), referenced NPP (simulated by Boreal Ecosystem Productivity Simulator (BEPS) model), forest age and forest types, land cover, digital elevation model (DEM), soil texture, CO2 concentration and nitrogen deposition. We used the InTEC (integrated terrestrial ecosystem carbon-budget) model to simulate the NPP dynamics for forest ecosystems in Jiangxi Province during the period of 1901-2010. The effects of climate change, forest age, CO2 concentration and nitrogen (N) deposition on forest NPP from 1970 to 2010 were discussed through designed scenarios.
Important findings (1) Validations by flux measurements and forest inventory data indicated that the InTEC model was able to capture the interannual and spatial variations of forest NPP. (2) The average forest NPP was 47.7 Tg C·a-1 (± 4.2 Tg C·a-1) during 1901-2010. The NPP in the 1970s, 1980s, 1990s and 2000s was 50.7, 48.8, 45.4, and 55.2 Tg C·a-1, respectively. As forest regrows, NPP significantly increased for forests in Jiangxi Province in the 2000s, and exceed that in the 1970s for more than 60% of the forest area. (3) During 1970-2010, under the scenarios of disturbance and non-disturbance, the forest NPP were underestimated by 7.3 Tg C·a-1 (14.5%) and overestimated by 3.6 Tg C·a-1 (7.1%) compared to the scenarios of all disturbance and non-disturbance factors, respectively. Compared to the average NPP during 1970-2010, climate change decreased NPP by -2.0 Tg C·a-1 (-4.7%), N deposition increased NPP by 4.5 Tg C·a-1 (10.4%), CO2 concentration change, and the integrated fertilization of CO2 and N deposition increased NPP by 4.4 Tg C·a-1 (10.3%) and 9.4 Tg C·a-1 (21.8%), respectively.  相似文献   

5.
《植物生态学报》2017,41(9):964
Aims Seasonal snow cover is one of the most important factors that control winter soil respiration in the cold biomes. The warming-induced decreases in snowpack could affect winter soil respiration of subalpine forests. The aim of this study was to explore the effects of snow removal on winter soil respiration in a Picea asperata forest.Methods A snow removal experiment was conducted in a P. asperata forest stand in western Sichuan during the winter of 2015/2016. The snow removal treatment was implemented using wooden roof method. Soil temperatures, snow depth and soil respiration rate were simultaneously measured in plots of snow removal and controls during the experimental period.Important findings Compared to the control, snow removal increased the fluctuations of soil temperatures. The average daily temperature of the soil surface and that at 5 cm depth were 1.12 °C and 0.34 °C lower, respectively, and the numbers of freeze-thaw cycles of the soil surface and that at 5 cm depth were increased by 39 and 12, respectively, in plots of snow removal than in the controls. The average rate of winter soil respiration and CO2 efflux were 0.52 μmol·m-2·s-1 and 88.44 g·m-2, respectively. On average, snow removal reduced soil respiration rate by 21.02% and CO2 efflux by 25.99%, respectively. More importantly, the snow effect mainly occurred in the early winter. The winter soil respiration rate had a significant exponential relationship with soil temperature. However, snow removal significantly reduced temperature sensitivity of the winter soil respiration. Our results suggest that seasonal snow reduction associated with climate change could inhibit winter soil respiration in the subalpine forests of western Sichuan, with significant implications for the carbon dynamics of the subalpine forests.  相似文献   

6.
森林生态系统碳循环对全球氮沉降的响应   总被引:4,自引:0,他引:4  
森林土壤和植被储存着全球陆地生态系统大约46%的碳,在全球碳平衡中起着非常重要的作用。过去几十年来,森林生态系统的碳循环和碳吸存受到了全球氮沉降的深刻影响,因为氮沉降改变了陆地生态系统的生产力和生物量积累。以欧洲和北美温带森林区域开展的研究为基础,综述了氮沉降对植物光合作用、土壤呼吸、土壤DOM及林木生长的影响特征和机理,探讨了森林生态系统碳动态对氮沉降响应的不确定性因素。热带森林C、N循环与大部分温带森林不同,人为输入的氮对热带生态系统过程的影响也可能不同,因此指出了在热带地区开展碳氮循环耦合研究的必要性和紧迫性。  相似文献   

7.
《植物生态学报》2016,40(4):318
Aims
Sparse Ulmus pumila forest is an intrazonal vegetation in Onqin Daga Sandy Land, while Populus simonii has been widely planted for windbreak and sand dune stabilization in the same region. Our objective was to compare the differences in carbon (C) density of these two forests and their relationships with stand age.
Methods
We measured the C content of tree organs (leaf, twig, stem, and root), herb layers (above ground vegetation and below ground root) and soil layers (up to 100 cm) in sparse Ulmus pumila forests and Populus simonii plantations of different stand ages, and then computed C density and their proportions in total ecosystem carbon density. In addition, we illustrated the variation in carbon density-stand age relationship for tree layer, soil layer and whole ecosystem. We finally estimated the C sequestration rates for these two forests by the space-for-time substitution approach.
Important findings
The average C contents of tree layer and soil layer for sparse Ulmus pumila forests were lower than those for Populus simonii plantations. The total C density of sparse Ulmus pumila forests was half of that of Populus simonii plantations. The carbon density of soil and tree layers accounted for more than 98% of ecosystem C density in the two forests. Irrespective of forest type, the C density ratios of soil to vegetation decreased with stand age. This ratio was 1.66 for sparse Ulmus pumila forests and 1.87 for Populus simonii plantations when they were over-matured. The C density of tree layer, soil layer, and total ecosystem in both forests increased along forest development. There were significantly positive correlations between tree layer’s C density and stand age in both forests and between the total ecosystem C density of sparse Ulmus pumila forests and stand age. The C sequestration rate of tree layer was 5-fold higher in Populus simonii plantation than in sparse Ulmus pumila forest. The ecosystem-level C sequestration rate was 0.81 Mg C·hm-2·a-1 for sparse Ulmus pumila forest and 5.35 Mg C·hm-2·a-1 for Populus simonii plantation. These findings have implications for C stock estimation of sandy land forest ecosystems and policy-making of ecological restoration and C sink enhancement in the studied area.  相似文献   

8.
《植物生态学报》2017,41(9):953
Aims The bank of soil carbon of forests plays an important role in the global carbon cycle. Our aim is to understand the characteristics of soil carbon storage and its determinants in the forests in Shaanxi Province.Methods The data of forest inventory in 2009 and resampling in 2011 were used to analyze the characteristics of soil carbon storage and its determinants in the forest soil in Shaanxi Province.Important findings The soil carbon storage in the forests in Shaanxi Province was 579.68 Tg. Soil carbon storage of Softwood and Hardwood forests were the highest among all forest types, accounting for 36.35% of the whole province forest soil carbon storage. The forest soil carbon storage was 4.15 times greater in the natural forest (467.17 Tg) than that in the plantations. The young and middle-aged forests were the main contributors to the total carbon storage across all age groups, accounting for about 57.30% of the total forest soil carbon storage. The average soil carbon density of forests in Shaanxi Province was 90.68 t∙hm-2, in which the soil carbon density of Betula forests was the highest (141.74 t∙hm-2). Soil carbon density of different forest types were gradually decreased with soil depth. In addition, it was highest in middle-aged forest. Soil carbon density was higher in the natural forest ecosystems than that in the plantations within the each age group, indicating natural forest ecosystems have higher capacity of carbon sequestration. Differences in the spatial patterns between carbon storage and density indicated that carbon storage was related to forest coverage. The soil carbon density and storage of forests in Yulin were the lowest across the province. This suggests that, in order to enhance the regional carbon sequestration capacity in this region, we need to appropriately strengthen artificial afforestation activities and manage them scientifically and rationally. The soil carbon density of forests in Shaanxi Province decreased with the increase of longitude, latitude, and annual temperature, but increased with the increase of altitude and annual rainfall. This study provides data basis for provincial estimation of forest soil carbon bank in China.  相似文献   

9.
中国寒温带不同林龄白桦林碳储量及分配特征   总被引:1,自引:0,他引:1       下载免费PDF全文
魏红  满秀玲 《植物生态学报》2019,43(10):843-852
为了解中国寒温带地区不同林龄白桦林生态系统碳储量及固碳能力, 在样地调查基础上, 以大兴安岭地区25、40与61年白桦(Betula platyphylla)林生态系统为研究对象, 对其乔木层、林下地被物层(灌木层、草本层、凋落物层)、土壤层(0-100 cm)碳储量与分配特征进行调查研究。结果表明白桦林乔木层各器官碳含量在440.7-506.7 g·kg -1之间, 各器官碳含量随着林龄的增长而降低; 灌木层、草本层碳含量随林龄的增加呈先降后升的变化趋势; 凋落物层碳含量随林龄增加而降低; 土壤层(0-100 cm)碳含量随林龄增加而显著升高, 随着土层深度的增加而降低。白桦林生态系统各层次碳储量均随林龄的增加而明显升高。25、40与61年白桦林乔木层碳储量分别为11.9、19.1和34.2 t·hm -2, 各器官碳储量大小顺序表现为树干>树根>树枝>树叶, 树干碳储量分配比例随林龄增加而升高。25、40与61年白桦林生态系统碳储量分别为77.4、180.9和271.4 t·hm -2, 其中土壤层占生态系统总碳储量的81.6%、87.7%和85.9%, 是白桦林生态系统的主要碳库。随林龄增加, 白桦林年净生产力(2.0-4.4 t·hm -2·a -1)、年净固碳量(1.0-2.1 t·hm -2·a -1)均出现增长, 老龄白桦林仍具有较强的碳汇作用。  相似文献   

10.
《植物生态学报》2018,42(4):508
森林类型更替是影响生态系统有机质循环的重要因素, 它对森林生态系统的生产力、碳吸存和养分保持功能有影响。然而关于中亚热带不同森林类型对土壤碳氮含量和酶活性的影响及土壤碳氮含量和酶活性之间的关系鲜有报道。该文研究了福建省三明市3种典型亚热带森林——米槠(Castanopsis carlesii)天然次生林(SF)、米槠人工促进天然更新林(AR)、马尾松(Pinus massoniana)人工林(PM)的淋溶层(A层)土壤碳氮含量和土壤微生物酶活性的关系。结果表明: 在3种森林类型表层土壤中, 可溶性有机质中可溶性有机碳、可溶性有机氮(DON)、荧光发射光谱腐殖化指数的趋势均为SF > AR > PM, 芳香化指数大小为PM > AR > SF; SF和AR的NH4 +-N显著高于PM, NO3 --N在3种林分中的含量低且差异不明显, 造成这种差异的原因是树种差异和人为干扰程度不同。PM的β-葡萄糖苷酶活性显著低于SF和AR; 纤维素水解酶活性大小为AR > SF > PM; PM多酚氧化酶显著高于SF和AR, 3种林分过氧化物酶无显著差异。AR的β-N-乙酰氨基葡萄糖苷酶(NAG)显著高于其他两种林分。冗余分析显示土壤总氮和DON是驱动淋溶层土壤酶活性的主要环境因子。总之, 土壤总氮含量与NAG活性呈正相关关系, 并且可溶性有机氮可能是氮循环中的重要一环; 土壤微生物优先利用易分解碳; 且碳氮养分循环之间存在一定的耦合关系。氮提高了与土壤碳相关的水解酶活性, 从而可促进碳周转。  相似文献   

11.
《植物生态学报》2016,40(4):327
Aims
Forest carbon storage in Nei Mongol plays a significant role in national terrestrial carbon budget due to its large area in China. Our objectives were to estimate the carbon storage in the forest ecosystems in Nei Mongol and to quantify its spatial pattern.
Methods
Field survey and sampling were conducted at 137 sites that distributed evenly across the forest types in the study region. At each site, the ecosystem carbon density was estimated thorough sampling and measuring different pools of soil (0-100 cm) and vegetation, including biomass of tree, grass, shrub, and litter. Regional carbon storage was calculated with the estimated carbon density for each forest type.
Important findings
Carbon storage of vegetation layer in forests in Nei Mongol was 787.8 Tg C, with the biomass of tree, litter, herbaceous and shrub accounting for 93.5%, 3.0%, 2.7% and 0.8%, respectively. Carbon density of vegetation layer was 40.4 t·hm-2, with 35.6 t·hm-2 in trees, 2.9 t·hm-2 in litter, 1.2 t·hm-2 in herbaceous and 0.6 t·hm-2 in shrubs. In comparison, carbon storage of soil layer in forests in Nei Mongol was 2449.6 Tg C, with 79.8% distributed in the first 30 cm. Carbon density of soil layer was 144.4 t·hm-2. Carbon storage of forest ecosystem in Nei Mongol was 3237.4 Tg C, with vegetation and soil accounting for 24.3% and 75.7%, respectively. Carbon density of forest ecosystems in Nei Mongol was 184.5 t·hm-2. Carbon density of soil layer was positively correlated with that of vegetation layer. Spatially, both carbon storage and carbon density were higher in the eastern area, where the climate is more humid. Forest reserves and artificial afforestations can significantly improve the capacity of regional carbon sink.  相似文献   

12.
《植物生态学报》2016,40(4):304
Aims
Carbon sequestration is the basic function and most primary service of forest ecosystems, and plays a vital role in mitigating the global climate change. However, carbon storage and allocation in forest ecosystems have been less studied at regional scales than at forest stand levels, and the results are subject to uncertainty due to inconsistent methodologies. In this study we aim to obtain relatively accurate estimates of forest carbon stocks and sequestration rate at a provincial scale (regional) based on plot surveys of plants and soils.
Methods
In consideration of the areas and distributions of major forest types, 212 sampling plots, covering different age classes and origins (natural forests vs. planted forests), were surveyed in Gansu Province in northern China. Field investigations were conducted for vegetation layers (trees, shrubs, herbs and litter), soil profiles, and sampling of both plant materials and soils for laboratory analyses. Regional carbon stocks were calculated by up-scaling the carbon densities of all forest types with their corresponding areas. Carbon sequestration rate was estimated by referencing the reports of national forest inventory data for different periods.
Important findings Forest carbon stocks at the provincial scale were estimated at 612.43 Tg C, including 179.04 Tg C in biomass and 433.39 Tg C in soil organic materials. Specifically, natural forests stored 501.42 Tg C, approximately 4.52 times than that of the plantations. Biomass carbon density in both natural forests and plantations showed an increasing trend with stand age classes, and was greater in natural forests than in plantations within the same age classes. Soil carbon density also increased with stand age classes in natural forests, but the highest value occurred at the pre-mature stage in plantations. The weighted average of regional biomass carbon density was at 72.43 Mg C·hm-2, with the average value of 90.52 Mg C·hm-2 in natural forests and 33.79 Mg C·hm-2 in plantations, respectively. In 1996, vegetation stored 132.47 Tg C in natural forests and 12.81 Tg C in plantations, respectively, and the values increased to 152.41 and 26.63 Tg C in 2011, with the mean carbon sequestration rates of 1.33 and 0.92 Tg C·a-1. Given that young and middle-aged forests account for a large proportion (62.28%) of the total forest areas, the region is expected to have substantial potential of carbon sequestration.  相似文献   

13.
《植物生态学报》2014,38(8):795
亚洲中部干旱区地处欧亚大陆腹地, 干旱少雨, 生态环境十分脆弱, 研究该地区大气与地表之间的能量和物质交换对干旱区水资源利用和生态环境保护具有重要意义。该文分析了亚洲中部干旱区荒漠与草地生态系统能量、水汽和CO2通量的日变化及季节变化特征, 探究了水汽和CO2通量对主要环境因子的响应。通过分析亚洲中部干旱区3个站点的涡度相关资料发现: 亚洲中部干旱区荒漠和草地生态系统在生长季(4-10月)能量、水汽通量、净CO2通量和总初级生产力的日变化呈“单峰型”, 而荒漠生态系统呼吸日变化相对稳定; 草地生态系统白天的潜热通量占净辐射通量的比例明显高于荒漠生态系统; 草地生态系统在5-8月呈现较强的碳汇, 而荒漠生态系统表现为弱碳汇。亚洲中部干旱区草地和荒漠生态系统水汽通量和总初级生产力对降水、净辐射通量或光合有效辐射、饱和水汽压差、气温均表现出明显的敏感性。  相似文献   

14.
浙江省森林生态系统碳储量及其分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011-2012年野外标准地实测资料, 结合第八次全国森林资源清查资料, 研究了浙江省森林生态系统碳储量及其分布特征。结果表明: 浙江省森林生态系统碳储量为602.73 Tg, 其中乔木层、灌草层、凋落物层和土壤层碳储量分别为122.88 Tg、16.73 Tg、11.36 Tg和451.76 Tg, 分别占生态系统碳储量的20.39%、2.78%、1.88%和74.95%; 在各森林类型中, 阔叶混交林碳储量为138.03 Tg, 所占比例最大(22.90%); 在森林各龄组中, 幼、中龄林约占浙江省森林生态系统碳储量的70.66%, 是碳储量的主要贡献者。浙江省森林生态系统平均碳密度为120.80 t·hm-2, 乔木层、灌草层、凋落物层和土壤层碳密度分别为24.65 t·hm-2、3.36 t·hm-2、2.28 t·hm-2和90.51 t·hm-2。浙江省森林生态系统土壤层碳储量和生态系统碳储量呈极显著相关关系, 说明土壤层碳储量对浙江省森林生态系统碳储量贡献较大。浙江省天然林乔木层碳密度整体表现为过熟林>成熟林>近熟林>中龄林>幼龄林, 而人工林乔木层碳密度表现为过熟林>近熟林>成熟林>中龄林>幼龄林。浙江省幼、中龄林林分面积占比重较大, 占全省森林面积的76.76%, 若对现有森林进行更好的经营和管理, 可以增加浙江省森林的碳固存能力。  相似文献   

15.
Forest fires frequently occur in boreal forests,and their effects on forest ecosystems are often significant in terms of carbon flux related to climate changes.Soil respiration is the second largest carbon flux in boreal forests and the change in soil respiration is not negligible.Environmental factors controlling the soil respiration,for example,soil temperature,are altered by such fires.The abnormal increase in soil temperature has an important negative effect on soil microbes by reducing their activities or even by killing them directly with strong heat.On the other hand,although vegetation is directly disturbed by fires,the indirect changes in soil respiration are followed by changes in root activities and soil microbes.However,there is very limited information on soil respiration in the forests of Northeast China.This review,by combining what is known about fire influence on soil respiration in boreal forests from previous studies of post-fire effects on soil conditions,soil microbes,and forest regeneration,presents possible scenarios of the impact of anticipated post-fire changes in forest soil respiration in Northeast China.  相似文献   

16.
Forest fires frequently occur in boreal forests, and their effects on forest ecosystems are often significant in terms of carbon flux related to climate changes. Soil respiration is the second largest carbon flux in boreal forests and the change in soil respiration is not negligible. Environmental factors controlling the soil respiration, for example, soil temperature, are altered by such fires. The abnormal increase in soil temperature has an important negative effect on soil microbes by reducing their activities or even by killing them directly with strong heat. On the other hand, although vegetation is directly disturbed by fires, the indirect changes in soil respiration are followed by changes in root activities and soil microbes. However, there is very limited information on soil respiration in the forests of Northeast China. This review, by combining what is known about fire influence on soil respiration in boreal forests from previous studies of post-fire effects on soil conditions, soil microbes, and forest regeneration, presents possible scenarios of the impact of anticipated post-fire changes in forest soil respiration in Northeast China.  相似文献   

17.
《植物生态学报》2013,37(8):718
在内蒙古温带草原围封、放牧和割草3种处理下的样地内, 对生态系统尺度和大针茅(Stipa grandis)、冷蒿(Artemisia frigida)、羊草(Leymus chinensis) 3种优势种植物叶片尺度上的气体交换和水分关系进行了测定, 对比研究了植物碳水对环境的响应。结果表明, 在优势种单株尺度和生态系统尺度上, 大气-植被CO2交换因草地利用方式的不同而具有不同的表现。在生态系统层面, 放牧样地的群落净CO2气体交换量和总初级生产力都与围封样地和割草样地有差异, 群落总初级生产力受生态系统呼吸的影响。在放牧处理下, 群落净CO2气体交换量日变化表现为生态系统对碳的吸收, 而围封和割草则以碳释放为主。单叶光合速率出现负值并随时间推移而恢复的现象, 应是植物对干旱高温、高光照的特殊反应。生态系统水分利用效率没有明显不同, 但各样地的蒸散能力有趋势上的变化; 对于同种植物, 放牧样地植物单叶水分利用效率的日变化波动幅度最大, 围封样地最小。  相似文献   

18.
土壤呼吸是森林生态系统碳循环的关键过程,土壤动物可通过自身代谢及影响微生物活动调控土壤呼吸,因此研究土壤动物与土壤呼吸的相互关系对进一步揭示生态系统碳循环的规律和机理具有重要意义。通过野外定点,以帽儿山3种森林生态系统的土壤呼吸及土壤动物为研究对象,探讨不同森林生态系统的土壤呼吸、土壤动物个体密度和生物量的时间变化规律及二者相互关系。结果表明:(1)3种森林生态系统土壤总呼吸速率与土壤异养呼吸速率均呈现先增强后减弱的时间动态变化(P<0.05),且不同森林生态系统土壤异养呼吸速率差异显著(P<0.05),表现为硬阔叶林最高,红松人工林最低;(2)3种森林生态系统土壤动物生物量也具有显著的时间动态变化(P<0.05),均在9月份达到最大,且不同森林生态系统土壤动物个体密度显著不同(P<0.05),蒙古栎林土壤动物个体密度显著小于红松人工林与硬阔叶林;(3)通过回归分析可得,土壤动物数量及生物量的增加抑制了土壤呼吸速率,尤其在生长季初期、末期。研究表明土壤动物可通过抑制微生物生命活动和降低根系呼吸从而对土壤总呼吸及异养呼吸产生负反馈作用,三者是不可分割的整体,与土壤温度、水分等环境因子共同调控着土壤呼吸。  相似文献   

19.
《植物生态学报》2018,42(7):703
林龄对森林生态系统碳储量及其在不同碳组分(植被、木质残体、凋落物和土壤)中的分配有着重要影响。亚热带森林在陆地生态系统碳循环中起着重要作用, 水青冈属(Fagus)植物是我国亚热带广泛分布的重要树种, 而有关水青冈林碳储量随林龄变化的研究在我国鲜有报道。该研究选取贵州月亮山3个演替阶段(林龄分别为33年、82年和208年)的亮叶水青冈(Fagus lucida)林为研究对象, 对其生态系统全组分的碳储量及其分配格局进行了调查与估算。研究发现, 随林龄增加, 亮叶水青冈林生态系统碳储量显著增加, 33年、82年和208年林分别为(186.9 ± 46.0)、(265.8 ± 82.3)和(515.1 ± 176.4) Mg·hm -2, 且生态系统碳储量的增加主要由植被碳储量(占比由32%增长至79%)贡献。凋落物与木质残体碳储量随林龄增加亦呈增加趋势, 但二者占生态系统碳储量的比例很小(<1%)。而不同林龄土壤碳储量无显著差异, 其占比由33年林的67%降至208年林的20%。这些结果验证了林龄对森林生态系统各组分碳储量及其分配的重要影响, 同时指出干扰和土地利用历史等对森林植物残体和土壤碳积累的重要作用。  相似文献   

20.
亚热带森林生态系统具有巨大的固碳潜力。净初级生产力(NPP)在碳循环过程中具有重要的作用, 受到气候变化、大气成分、森林扰动的强度和频度、林龄等因子的综合影响, 然而目前上述各因子对亚热带森林NPP变化的贡献尚不明确, 需要鉴别森林NPP时空变化的主要驱动因子, 以准确认识亚热带森林生态系统碳循环。该文综合气象数据、年最大叶面积指数(LAI)、参考年NPP (BEPS模型模拟)、林龄、森林类型、土地覆盖、数字高程模型(DEM)、土壤质地、CO2浓度、氮沉降等多源数据, 利用InTEC模型(Integrated Terrestrial Ecosystem Carbon-budget Model)研究亚热带典型地区江西省森林生态系统1901-2010年NPP时空动态变化特征, 通过模拟情景设计, 着重讨论1970-2010年气候变化、林龄、CO2浓度和氮沉降对森林NPP动态变化的影响。研究结果如下: (1) InTEC模型能较好地模拟研究区NPP的时空变化; (2)江西省森林NPP 1901-2010年为(47.7 ± 4.2) Tg C·a-1 (平均值±标准偏差), 其中20世纪70年代、80年代、90年代分别为50.7、48.8、45.4 Tg C·a-1, 2000-2009年平均为55.2 Tg C·a-1; 随着森林干扰后的恢复再生长, 江西省森林NPP显著上升, 2000-2009年NPP增加的森林面积占森林总面积的60%; (3) 1970-2010年, 仅考虑森林干扰因子和仅考虑非干扰因子(气候、氮沉降、CO2浓度)情景下NPP分别为43.1和53.9 Tg C·a-1, 比综合考虑干扰因子和非干扰因子作用下的NPP分别低估7.3 Tg C·a-1 (低估的NPP与综合考虑干扰因子和非干扰因子作用下NPP的比值为14.5%,下同)和高估3.6 Tg C·a-1 (7.1%); 气候因子导致平均NPP减少2.0 Tg C·a-1 (4.7%), 氮沉降导致平均NPP增加4.5 Tg C·a-1 (10.4%), CO2浓度变化及耦合效应(氮沉降+ CO2浓度变化)分别导致平均NPP增加4.4 Tg C·a-1 (10.3%)和9.4 Tg C·a-1 (21.8%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号