首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
在小型消声水池中,同步测量水下等离子体脉冲声源的放电特性和声特性,实验分析研究了其在单电极和多电极下负载注入峰值功率和放电能量对声特性的影响。结果表明,在相同的电极数和间距下,直达波脉冲声源级仅与负载注入峰值功率有关,气泡脉冲声源级和气泡周期则主要受放电能量影响,多电极放电通过减小单根电极放的电能量来减小气泡脉冲声源级和气泡周期。此外,在相同的充电电压下,减小充电电容对电极数的比,可以增大直达波脉冲声源级并压制气泡脉冲;负载注入峰值功率对放电能量的比对声特性的影响也呈现出类似规律。实测及其分析结果可为进一步优化水下等离子体脉冲声源的声特性提供参考。  相似文献   

2.
利用“液电效应”产生的等离子体冲激声源在岩石破碎、地质导向、确定位置等方向有巨大的应用价值,目前关于等离子体放电回路中充电电压与放电特性、冲激波特性的关联性仍缺乏进一步深入了解。基于水下等离子体放电实验平台,建立水下等离子体冲激声源的仿真模型,对比分析冲激声源放电典型的电压、电流及冲激波波形的实测和仿真结果,通过仿真模型研究不同充电电压下的放电特性与冲激波特性。结果表明,当充电电压从15 kV提高到25 kV时,冲激波强度峰值增大了31.9%,冲激波能量增大了53.8%,因外电路能量增加速率大于冲激波能量增加速率促使其转化效率降低了28.4%。通过改变充电电压来预测冲激波特性,对比分析不同充电电压下的冲激波强度、能量损耗及能量转化效率等,为水下冲激声源不同工程应用选取最佳的充电电压提供参考依据,也可根据充电电压对冲激波特性影响来设计水下等离子体冲激声源的充电储能部分。  相似文献   

3.
为研究电容储能缝焊工艺对304不锈钢接头性能的影响规律,对0.5 mm厚304不锈钢板进行了缝焊工艺实验,通过接头拉剪力检测和金相显微组织观察,对比了不同焊接速度、充电电容和放电频率下的缝焊接头组织特点,并分析了各工艺参数对接头拉剪力、熔核宽度、焊缝重叠量和焊透率的影响.结果表明:储能焊焊缝中心晶粒细小,熔合区为柱状晶,重叠部位晶粒粗大,接头组织呈现不均匀性,随着充电电容的增大晶粒变得更细密,组织不均匀程度显著降低,焊接速度和放电频率增大导致晶粒组织粗化并出现缩孔缺陷,提高电极压力可克服缩孔并使组织趋向均匀;充电电容对接头拉剪力的影响较小,焊接速度、充电电压、放电频率和电极压力调到一个合适值后,继续增大参数值对接头拉剪力影响很小;焊接速度的增大引起焊缝熔核宽度和重叠量急剧下降,充电电压增大引起焊缝焊透率下降过多,导致飞溅、过烧、毛刺等焊接缺陷的产生.因此,304不锈钢储能缝焊应采用低的焊接速度、较小的充电电压和较高的电极压力。  相似文献   

4.
利用乙炔黑为导电粉体,以PrFE为胶粘剂成功制备了具有较好充放电性能的多孔结构双电层电容器.利用TEM测定了电极材料乙炔黑的粉末形貌,利用SEM测定了电极的表面形貌,利用充放电电路测定了电容器的充放电曲线.研究结果表明,电极加工压力减小,小半径的孔洞所占比例下降,电极的实际使用表面积增大,比容量增高.压力从48Mpa下降到16MPa,比容量增大17%.压力大于48MPa,压力对电极的有效面积影响不大.胶粘剂含量下降,有效使用面积增大,电容器比容量提高.胶粘剂从14%降低到6%,比容量增大46%.压力增大导致电极的有效面积降低,电极上电荷密度提高,充电后的保持电压增大.电解液浓度增大,通过影响极板电荷密度,充电保持电压也有所提高.多孔电极的孔径分布,尤其是小孔径孔洞含量的增加直接影响了双电层电容器的充放电过程.随制备压力增大,小孔量增加,初期放电缓慢,后期加速.  相似文献   

5.
毕学松  朱亮 《纳米科技》2010,(1):34-37,42
应用金属丝段与电极非接触电爆设备,通过改变电场电压和电极间距进行系列电爆金属铜丝试验,对爆炸后产物进行分离称量,并利用显微镜观察各种产物的形貌特点,结果表明,丝段进入高压电场后,通过丝端部与电极之间的气体放电将大电流导入而发生电爆。等离子体旁路作用使湮没在等离子体内部一部分或整根金属丝段不发生电爆残留下来。电极间距较长时,释放在金属丝段上的能量密度减小,不能够使整个金属丝段气化爆炸。适合制备超细粉的电极间距范围随电场电压的增加而扩大,对应电场电压4kV、5kV和6kV时,适合制备超细粉的电极间距范围分别为23.3—25.2mm、22.7—27.3mm和22.7—58.6mm。  相似文献   

6.
故障现象:金正DVD—N611SDVD机插上电源后,碟片仓上DVD字样闪烁,电源打不开。 故障处理:检查开关电源部分各输出电压,发现所有输出电压都上下跳动,经检查,发现+12V滤波电容C15(2200uF/16V)容量减小(实测只有约600uF),更换C15后,机器故障排除。  相似文献   

7.
汽车车身 6061 铝合金电阻点焊工艺优化   总被引:1,自引:1,他引:0       下载免费PDF全文
目的优化6061铝合金电阻点焊工艺参数。方法采用正交实验对2 mm厚6061铝合金薄板进行对接,并进行了方差分析和性能测试。结果当选取方差最优方案,即电流22 k A、电极压力0.15 MPa、焊接时间15个周波这组焊接参数时,接头抗拉力为5.444 k N,较正交实验最大值提高了25.5%。而选取电流22 k A、电极压力0.20 MPa、焊接时间11个周波的焊接参数时,接头抗拉力最大,为6.262 k N,较正交实验最大值提高了44.35%。结论 6061铝合金最佳焊接参数为:电流22 k A、电极压力0.20 MPa、焊接时间11个周波。  相似文献   

8.
徐国柱 《照相机》1999,(10):31-33
闪光灯管是闪光灯中将电能转换为光能的器件。它是两端封装电极充有氙气的玻璃管。封装的电极分别称为阳极和阴极,所充氙气的压强约为40.5kPa。在电路中灯管的阳极、阴极分别和主电容(即储能电容)的正、负极连接,因而灯管电极间和主电容正负极间有着相同的电位差。灯管电极间的电位差称为灯管电压。闪光灯接通电源后要待主电容充电到一定电压才能在燃亮时达到应有的闪光指数,这一电压称为灯管的工作电压。在灯管阴极端的管壁上绕有触发极,是用于引燃灯管的。施加到触发极上的电压称为触发电压。小型闪光灯(包括机载闪光灯和小…  相似文献   

9.
本文采用HR4000CG-UV-NIR光纤光谱仪和NI-PCB压力传感器测量了水下等离子体声源脉冲放电光谱和强声波的压力幅值,分析了声与光之间的能量转换关系,并重点观察了不同放电参数对光谱特征的影响。实验结果表明,等离子体声源脉冲放电光谱为连续谱,能量主要集中在500 nm左右的谱段;放电产生的光能量和声波能量相互竞争,具有此消彼长的关系;提高放电电压,减小电极间隙距离可以提高光的辐射强度和半峰值谱宽度;增大电极间隙距离,将使发光能量向远紫外区移动;更换电极材料将明显改变光的谱分布和强度变化。  相似文献   

10.
张立峰  朱炎峰 《计量学报》2020,41(8):947-952
基于COMSOL软件构建了电容层析成像传感器三维有限元模型,并实现其正问题求解,在此基础上,进行了电容层析成像3层分布的阵列电极传感器参数的无量纲优化设计。首先,分析了传感器的屏蔽层半径R3、电极高度h、电极宽度w及电极层间距l对灵敏度均匀性指标P及电容值动态范围D的影响规律;然后,通过设计正交试验,综合分析各结构参数对优化指标的影响;最终,得到一组电容层析成像三维传感器的优化结构参数:R3=1.50,h=0.20,w=0.20,l=0.06。  相似文献   

11.
We report on the electrochemical and capacitive behaviors of poly(2,2-dimethyl-3,4-propylene-dioxythipohene) (PProDOT-Me2) films as polymeric electrodes in Type I electrochemical supercapacitors. The supercapacitor device displays robust capacitive charging/discharging behaviors with specific capacitance of 55 F/g, based on 60 μg of PProDOT-Me2 per electrode, that retains over 85% of its storage capacity after 32?000 redox cycles at 78% depth of discharge. Moreover, an appreciable average energy density of 6 Wh/kg has been calculated for the device, along with well-behaved and rapid capacitive responses to 1.0 V between 5 to 500 mV s(-1). Tandem electrochemical supercapacitors were assembled in series, in parallel, and in combinations of the two to widen the operating voltage window and to increase the capacitive currents. Four supercapacitors coupled in series exhibited a 4.0 V charging/discharging window, whereas assembly in parallel displayed a 4-fold increase in capacitance. Combinations of both serial and parallel assembly with six supercapacitors resulted in the extension of voltage to 3 V and a 2-fold increase in capacitive currents. Utilization of bipolar electrodes facilitated the encapsulation of tandem supercapacitors as individual, flexible, and lightweight supercapacitor modules.  相似文献   

12.
Micrometer‐sized electrochemical capacitors have recently attracted attention due to their possible applications in micro‐electronic devices. Here, a new approach to large‐scale fabrication of high‐capacitance, two‐dimensional MoS2 film‐based micro‐supercapacitors is demonstrated via simple and low‐cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro‐supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ~0.45 μm. The optimum MoS2‐based micro‐supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm?2 (volumetric capacitance of 178 F cm?3) and excellent cyclic performance, superior to reported graphene‐based micro‐supercapacitors. This strategy could provide a good opportunity to develop various micro‐/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro‐electronic devices.  相似文献   

13.
为实现体内压力(如:血压、颅内压等)的实时监测,采用微机电系统(MEMS)技术制造出植入式微压力传感器.由于它是电容式传感器,在信号读取系统中,首先通过集成电路CAV414将电容信号转换为电压信号.通过理论计算和实际试验测试,微压力传感器初始电容值为15 pF.CAV414检测范围是10 pF~2 nF,检测精度为电容初始值的5%,因此在该系统中可检测到的电容最小变化量为0.75 pF,其输出电压范围为0~5 V,该电压信号可以直接作为模拟/数字转换器(ADC)的输入信号.选用ADC0809实现模拟信号向数字信号的转换.ADC0809为一款8通道8位模数转换器,通过FPGA实现对ADC0809的驱动控制.ADC0809的8位输出信号直接作为数字信号的输入,在本文试验中数字信号处理通过FPGA编程实现.  相似文献   

14.
Ultrafast-charging energy storage devices are attractive for powering personal electronics and electric vehicles.Most ultrafast-charging devices are made of carbonaceous materials such as chemically converted graphene and carbon nanotubes.Yet,their relatively low electrical conductivity may restrict their performance at ultrahigh charging rate.Here,we report the fabrication of a porous titanium nitride(TiN)paper as an alternative electrode material for ultrafast-charging devices.The TiN paper shows an excellent conductivity of 3.67×104 S m−1,which is considerably higher than most carbon-based electrodes.The paper-like structure also contains a combination of large pores between interconnected nanobelts and mesopores within the nanobelts.This unique electrode enables fast charging by simultaneously providing efficient ion diffusion and electron transport.The supercapacitors(SCs)made of TiN paper enable charging/discharging at an ultrahigh scan rate of 100 V s−1 in a wide voltage window of 1.5 V in Na2SO4 neutral electrolyte.It has an outstanding response time with a characteristic time constant of 4 ms.Significantly,the TiN paper-based SCs also show zero capacitance loss after 200,000 cycles,which is much better than the stability performance reported for other metal nitride SCs.Furthermore,the device shows great promise in scalability.The filtration method enables good control of the thickness and mass loading of TiN electrodes and devices.  相似文献   

15.
为探究电极制备过程对材料双电层电容可能带来的变化,以褐藻为前驱体制备多孔碳,研究了电容测试过程中碳颗粒尺寸和电极制片压力两种工艺参数对其双电层电容性能的影响规律.通过将多孔碳粉末严格筛分成5组不同的尺寸,分别制成电极并测试其充放电性能和循环伏安曲线,得到比电容随颗粒尺寸变化的规律;再选取优化尺寸的多孔碳,在4种不同的压力下制成电极片,进而研究了不同制片压力对电极电容的影响规律.研究表明,在微米级,所制电极的比电容随碳颗粒尺寸的减小显著增加,同时随制片压力的增大,比电容先增大后减小.本实验条件下,碳颗粒尺寸小于25μm、制片压力为10 MPa(对应电极片所受真实压强约619 MPa)时,得到的电极片具有最高的比电容值.  相似文献   

16.
Printable supercapacitors are regarded as a promising class of microscale power source, but are facing challenges derived from conventional sandwich‐like geometry. Herein, the printable fabrication of new‐type planar graphene‐based linear tandem micro‐supercapacitors (LTMSs) on diverse substrates with symmetric and asymmetric configuration, high‐voltage output, tailored capacitance, and outstanding flexibility is demonstrated. The resulting graphene‐based LTMSs consisting of 10 micro‐supercapacitors (MSs) present efficient high‐voltage output of 8.0 V, suggestive of superior uniformity of the entire integrated device. Meanwhile, LTMSs possess remarkable flexibility without obvious capacitance degradation under different bending states. Moreover, areal capacitance of LTMSs can be sufficiently modulated by incorporating polyaniline‐based pseudocapacitive nanosheets into graphene electrodes, showing enhanced capacitance of 7.6 mF cm?2. To further improve the voltage output and energy density, asymmetric LTMSs are fabricated through controlled printing of linear‐patterned graphene as negative electrodes and MnO2 nanosheets as positive electrodes. Notably, the asymmetric LTMSs from three serially connected MSs are easily extended to 5.4 V, triple voltage output of the single cell (1.8 V), suggestive of the versatile applicability of this technique. Therefore, this work offers numerous opportunities of graphene and analogous nanosheets for one‐step scalable fabrication of flexible tandem energy storage devices integrating with printed electronics on same substrate.  相似文献   

17.
A study of the voltage coefficient of precise compressed-gas capacitors is described. A series of measuring methods based on the formula for calculating the voltage coefficient is presented: measuring the variations of capacitance when the capacitor is tilted in various directions to a specific angle; measuring the variations in capacitance when the capacitor is tilted in a specific direction to various angles; and measuring the variations in the coordinates of the electrodes when these electrodes are subjected to various mechanical forces, etc. These methods were used to test a 350 kV, 50 pF capacitor, and its voltage coefficient was found to be less than one part in a million from 0 kV up to 350 kV  相似文献   

18.
Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single‐structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy‐density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two‐step process. The 3D few‐layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α‐MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as‐prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg?1 is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg?1). A high specific capacitance (1108.79 F g?1) and power density (799.84 kW kg?1) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge–discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy‐storage devices with high stability and power density in neutral aqueous electrolyte.  相似文献   

19.
Liu  Zehua  Tian  Xiaocong  Xu  Xu  He  Liang  Yan  Mengyu  Han  Chunhua  Li  Yan  Yang  Wei  Mai  Liqiang 《Nano Research》2017,10(7):2471-2481
Planar micro-supercapacitors show great potential as the energy storage unit in miniaturized electronic devices.Asymmetric structures have been widely investigated in micro-supercapacitors,and carbon-based materials are commonly applied in the electrodes.To integrate different metal oxides in both electrodes in micro-supercapacitors,the critical challenge is the pairing of different faradic metal oxides.Herein,we propose a strategy of matching the voltage and capacitance of two faradic materials that are fully integrated into one high-performance asymmetric micro-supercapadtor by a fadle and controllable fabrication process.The fabricated micro-supercapacitors employ MnO2 as the positive active material and Fe2O3 as the negative active material,respectively.The planar asymmetric micro-supercapacitors possess a high capacitance of 60 F·cm-3,a high energy density of 12 mW·h·cm-3,and a broad operation voltage range up to 1.2 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号