首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacy of three agents which alter the metabolism of arachidonic acid was investigated in normal, conscious horses. A dose response evaluation was made of flunixin meglumine and phenylbutazone, two cyclo-oxygenase inhibitors, and of a selective thromboxane synthetase inhibitor, UK-38,485. Radioimmunoassay of thromboxane B2 (TxB2) and 6-keto prostaglandin F1 alpha (PGF1 alpha) was used to assess the concentrations of thromboxane A2 (TxA2) and prostacyclin (PGI2) respectively, in serum. Flunixin was the most potent inhibitor of serum TxB2 and 6-keto PGF1 alpha production. UK-38,485 also decreased serum TxB2 generation while significantly increasing serum 6-keto PGF1 alpha levels, thus confirming its selectivity as a thromboxane synthetase inhibitor.  相似文献   

2.
Arachidonic acid metabolites (AAM) were measured in milk and plasma during the course of acute endotoxin-induced mastitis in 12 lactating cows. Mastitis was induced by intramammary challenge exposure with 10 micrograms of Escherichia coli (026:B6) endotoxin. Endotoxin was injected into the teat cistern via the teat canal of a single randomly selected rear quarter of each cow. Concentrations of prostaglandin (PG) F2 alpha and thromboxane (Tx) B2 in fat-free unextracted milk and of 15-keto-13,14-dihydro-PGF2 alpha in plasma were measured by radioimmunoassay. Total production of AAM in milk was determined by measuring quarter milk production. The AAM were compared in 6 cows administered flunixin meglumine (1.1 mg/kg of body weight) and in 6 cows administered saline solution. Concentrations of TxB2 in milk were significantly (P less than 0.001) increased during the early course of acute mastitis in endotoxin-treated quarters of cows not administered flunixin meglumine. Peak concentrations of TxB2 in milk occurred at 8 hours after endotoxin inoculation. Flunixin meglumine treatment produced significant (P less than 0.05) reductions in milk TxB2 and plasma 15-keto-13,14-dihydro-PGF2 alpha concentrations. Concentrations of PGF2 alpha in milk and total PGF2 alpha and TxB2 production per quarter per milking were not significantly influenced by endotoxin challenge or by flunixin meglumine treatment.  相似文献   

3.
Endotoxin-induced synthesis of thromboxane A2 (TXA2), prostacyclin (PGI2) and prostaglandin E2 (PGE2) was studied in 3 cows after intravenous E. coli endotoxin (055:B5-0.025 mg/kg b.w.) administration. Blood sampling and monitoring of clinical signs were performed from 2 h prior to until 6 h after endotoxin challenge. Blood samples were analyzed for stable hydrolysis products of TXA2 (TXB2), PGI2 (6-keto PGF) and PGE2 (bicyclic PGE2), biochemical and haematological parameters. In a similar experimental design the efficacy of the non-steroidal anti-inflammatory drugs (NSAID) flunixin meglumine (FM) and phenylbutazone (PB) in suppressing eicosanoid synthesis and clinical signs in response to endotoxin challenge was investigated. Two groups of cows, each comprising 2 animals, were treated with FM and PB prior to endotoxin challenge. It was observed that plasma concentrations of TXB2, 6-keto PGF and bicyclic PGE2 increased rapidly after endotoxin challenge. Concentrations were significantly elevated for hours and were correlated to the severity of clinical signs of endotoxicosis. Pretreatment with NSAID suppressed mediator production and alleviated clinical signs. The experiments suggest a certain pathophysiological role of TXA2, PGI2 and PGE2 for the early systemic ill-effects of bovine endotoxicosis.  相似文献   

4.
OBJECTIVE: To determine plasma endotoxin concentration in horses competing in a 48-, 83-, or 159-km endurance race and its importance with regard to physical, hematologic, or serum and plasma biochemical variables. ANIMAL: 3 horses. PROCEDURE: Weight and rectal temperature measurements and blood samples were obtained before, during, and after exercise. Blood samples were analyzed for plasma endotoxin concentration; serum antiendotoxin antibody titers; thromboxane B2 (TxB2) and 6-keto-prostaglandin F1alpha (PGF1alpha) concentrations; tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) activities; WBC, plasma protein, lactate, serum electrolyte, and calcium concentrations; PCV; and creatine kinase activity. RESULTS: Detection of plasma endotoxin increased during exercise for horses competing at all distances but occurred more frequently in the 48- and 83-km groups. Plasma lactate concentration was significantly greater when endotoxin was concurrently detected. Endotoxin in plasma was not significantly associated with success of race completion. Plasma TxB2 and PGF1alpha concentrations and serum IL-6 activity significantly increased with exercise. Horses that had an excellent fitness level (as perceived by their owners) had greater decreases in serum antiendotoxin antibody titers during exercise than did horses perceived as less fit. In horses with better finish times, TxB2 and PGF1alpha concentrations were significantly greater and TNFalpha activity was significantly less than that of slower horses. CONCLUSIONS AND CLINICAL RELEVANCE: Endotoxemia developed during endurance racing, but was significantly correlated with increased plasma lactate concentration and not with other variables indicative of endotoxemia. Plasma TxB2 and PGF1alpha concentrations and serum TNFalpha activity may be associated with performance success.  相似文献   

5.
The efficacy of low doses of flunixin meglumine in reducing eicosanoid generation and clinical signs in response to experimentally induced endotoxaemia was investigated. Thromboxane B2 and 6-keto-prostaglandin F1 alpha were measured in serum and plasma by radioimmunoassay. Plasma flunixin concentrations were determined by high performance liquid chromatography and pharmacokinetic parameters derived non-compartmentally. In horses administered flunixin meglumine before endotoxin challenge, a significant suppression in plasma thromboxane B2 and 6-keto-prostaglandin F1 alpha generation was observed. Elevations in blood lactate were significantly suppressed in horses pretreated with 0.25 mg/kg bodyweight flunixin meglumine. Reduction of the clinical signs of endotoxaemia by flunixin meglumine was dose dependent. Low doses of flunixin inhibited eicosanoid production without masking all of the physical manifestations of endotoxaemia necessary for accurate clinical evaluation of the horse's status.  相似文献   

6.
The pharmacokinetics and inhibition of prostaglandin synthesis in conscious horses given various dosages of flunixin meglumine were studied. Plasma concentrations of flunixin were measured by high-performance liquid chromatography, and serum thromboxane B2 and 6-keto prostaglandin F1 alpha were quantitated by radioimmunoassay. Within the dosage range studied, linear pharmacokinetics were achieved. After IV administration of flunixin (1.1 mg/kg, 0.25 mg/kg, 0.1 mg/kg), significant suppression of serum thromboxane generation persisted for 12, 4, and 3 hours, respectively. Repeated administrations of flunixin (0.25 mg/kg) once every 8 hours maintained significant suppression of thromboxane generation for the duration of treatment. After treatment with flunixin was stopped, serum thromboxane generation exceeded base line (pretreatment values). Among the groups, significant alteration of 6-keto prostaglandin F1 alpha production was not observed.  相似文献   

7.
Twelve male neonatal calves (39 to 50 kg) were allotted to 3 groups of 4 calves each. All calves were anesthetized with halothane, and then Escherichia coli endotoxin was given intravenously (3 times) and intraperitoneally (3 times) during a 6-hour period. Group-1 calves were untreated, group-2 calves were pretreated with a low dose of flunixin meglumine (1.1 mg/kg of body weight), and group-3 calves were pretreated with a high dose of flunixin meglumine (4.4 mg/kg). In calves of group 1, the mean systemic arterial blood pressure (MABP) and cardiac output (CO) decreased, but pulmonary arterial pressure increased after the initial intravenous and intraperitoneal injections of endotoxin. In calves of this group, these changes were accompanied by increased plasma thromboxane B2 (TxB2) concentration. During this period, increased plasma TxB2 concentration or hemodynamic changes were not detected in calves of groups 2 and 3. Only calves of group 1 had altered hemodynamics early in the experiment; however, after 6 hours, calves of all 3 groups had similarly decreased CO and MABP. In calves of the untreated group, plasma 6-keto-prostaglandin (PG)F1 alpha concentration increased steadily from the beginning of the experiment until 3 hours later. The CO and MABP were low at the time when serum 6-keto-PGF1 alpha concentration was high; however, these 2 measurements also were low in treated calves who did not have correspondingly high plasma 6-keto-PGF1 alpha concentration. Regional blood flow analysis did not reveal correlations between prostanoid concentrations and altered blood flow to selected tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The role of prostaglandin F2 alpha (PGF2 alpha) in embryonic loss following induced endotoxemia was studied in mares that were 21 to 44 days pregnant. Thirteen pregnant mares were treated with a nonsteroidal anti-inflammatory drug, flunixin meglumine, to inhibit the synthesis of PGF2 alpha caused by Salmonella typhimurium endotoxin given IV. Flunixin meglumine was administered either before injection of the endotoxin (group 1, -10 min; n = 7), or after endotoxin injection into the mares (group 2, 1 hour, n = 3; group 3, 2 hours, n = 3); 12 pregnant mares (group 4) were given only S typhimurium endotoxin. In group 4, the secretion of PGF2 alpha, as determined by plasma 15-keto-13,14-dihydro-PGF2 alpha concentrations, was biphasic, initially peaking at 30 minutes followed by a second, larger peak approximately 105 minutes after the endotoxin was given IV. When flunixin meglumine was administered at -10 minutes, synthesis of PGF2 alpha was inhibited for several hours, after administration of flunixin meglumine at 1 hour, the second secretory surge of PGF2 alpha was blocked, and administration of the drug at 2 hours did not substantially modify the secretion of PGF2 alpha. Plasma progesterone concentrations were unchanged after endotoxin injections were given in group 1. In group 2, progesterone values decreased less than 2 ng/ml and remained low for several days. In group 3 and group 4, progesterone concentrations decreased to values less than 0.5 ng/ml by 48 hours after endotoxin injections were given.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of the intravenous (i.v.) administration of 1.1 mg/kg of flunixin meglumine on thromboxane B2 (TxB2) concentrations were studied in sedentary and 2-year-old horses in training. The baseline TxB2 serum concentrations generated during clotting were 2.89 +/- 0.81, 2.19 +/- 0.25 and 0.88 +/- 0.12 ng/ml for the 2-year-old Thoroughbreds in training, sedentary horses under 10 and over 10 years old, respectively. There was a significant difference in baseline TxB2 concentrations between older and younger horses (P less than 0.005). Significant reduction in TxB2 production from baseline were noted at 1 (P less than 0.01) and 4 h (P less than 0.01) but not at 8 h after flunixin administration. The percent reduction in serum TxB2 concentration at 1 h after the administration of flunixin was 68.6 +/- 7.3 and 45.2 +/- 6.8 for the training and sedentary horses, respectively; the differences were significant (P less than 0.04). Serum concentrations of TxB2 returned to baseline values by 12-16 h after flunixin administration. The results of this study indicate a difference in the TxB2 concentrations of older vs. younger horses and a difference in the suppression of TxB2 after the administration of flunixin in 2-year-old Thoroughbreds in training compared to sedentary horses. The results of this study suggest that the detection of low concentrations of flunixin in urine 24 h post-administration may not represent pharmacologic effective concentrations of flunixin in plasma.  相似文献   

10.
OBJECTIVE: To evaluate the effect of a phospholipid emulsion (PLE) on the initial response of horses to administration of endotoxin. ANIMALS: 12 healthy adult horses. PROCEDURES: Horses were assigned to 2 treatment groups (6 horses/group). The control group was administered 1 L of saline (0.9% NaCl) solution, and the treated group was administered PLE (200 mg/kg, IV); treatments were administered during a period of 120 minutes. An infusion of endotoxin was initiated in both groups starting 1 hour after initiation of the saline or PLE solutions. Physical examination and hemodynamic variables were recorded, and blood samples were analyzed for concentrations of tumor necrosis factor (TNF)-alpha, interleukin-6, thromboxane B2 (TxB2), 6 keto-prostaglandin F (PGF)1alpha, total leukocyte count, and PLE concentrations. An ANOVA was used to detect significant differences. RESULTS: Administration of PLE resulted in significantly lower rectal temperature, heart rate, cardiac output, right atrial pressure, and pulmonary artery pressure and higher total leukocyte counts in treated horses, compared with values for control horses. The TNF-alpha concentration was significantly less in treated horses than in control horses. The TxB2 and 6 keto-PGFF1alpha concentrations were significantly different between treated and control horses at 30 minutes (TxB2) and at 30 and 60 minutes (6 keto-PGF1alpha). CONCLUSIONS AND CLINICAL RELEVANCE: Prior infusion of PLE in horses administered a low dose of endotoxin decreased rectal temperature, heart rate, pulmonary artery pressure, and TNF-alpha concentrations. Results of this study support further evaluation of PLE for use in the treatment of horses with endotoxemia.  相似文献   

11.
Ponies with electromagnetic blood flow transducers implanted around the main pulmonary and left main coronary arteries, were used to evaluate effects of chronic sublethal endotoxin on cardiac output (CO), stroke volume, and left coronary blood flow (LCBF). Plasma thromboxane (TX), as indicated by TXB2, prostacyclin as indicated by 6-keto-prostaglandin (PG) F1 alpha, and hematologic and blood chemical values also were evaluated. Over 24 hours, 2 groups of ponies were given progressively increasing IV and intraperitoneal doses of Escherichia coli lipopolysaccharide (LPS) at 0, 6, 12, and 18 hours. Group 1 was not treated and group 2 was treated with flunixin meglumine, before each LPS insult. Initial LPS inoculation in group 1 led to 10-fold increases in TXB2 and 6-keto-PGF1 alpha values by 30 and 90 minutes, respectively. These eicosanoid values returned to base line by 6 hours after each insult. Although repeated LPS injections stimulated recurring high plasma concentrations of 6-keto-PGF1 alpha, TXB2 production became less with each successive LPS insult. Cardiac output decreased to 55% to 60% of base-line values in association with increased 6-keto-PGF1 alpha values. Left coronary blood flow could not be evaluated accurately. Severe lactic acidosis developed in group 1. Group-2 ponies remained clinically normal, indicating protection of cardiovascular function and peripheral perfusion with flunixin meglumine. Seemingly, flunixin meglumine helped to maintain acceptable cardiovascular function and tissue perfusion during endotoxemia. Flunixin meglumine given to healthy ponies had no effect on cardiovascular function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Newer cyclo-oxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drugs (NSAIDs), such as firocoxib, are proposed to reduce inhibition of cyclo-oxygenase-1 (COX-1) and avoid undesirable side effects, while continuing to inhibit inflammation associated with COX-2. However, COX selectivity is typically based on in vitro testing, which may not provide sufficient information critical for treatment selection. This study investigated the pharmacokinetics and ex vivo COX-1 and COX-2 inhibition of phenylbutazone, flunixin meglumine, meloxicam and firocoxib. Horses (n = 3) were administered one of the four drugs, in a randomised cross-over design, with 3-week washout periods. For each drug, three doses were given and sampling performed. Drug plasma concentrations, thromboxane B2 (TXB2) and prostaglandin E2 (PGE2) were determined. After one dose, TXB2 and PGE2 levels were significantly higher in horses administered firocoxib compared to flunixin meglumine. Following the third dose, TXB2 levels in horses administered firocoxib and meloxicam were significantly higher compared to flunixin meglumine or phenylbutazone; all drugs reduced PGE2 to a similar degree. The mean plasma half-lives were 5.97 ± 0.47, 4.74 ± 0.14, 8.24 ± 3.74 and 47.42 ± 7.41 h for phenylbutazone, flunixin meglumine, meloxicam and firocoxib, respectively. Firocoxib and meloxicam exhibited significantly less COX-1 inhibition compared to flunixin meglumine and phenylbutazone; all drugs inhibited COX-2. The plasma half-life of firocoxib was longer than the other NSAIDs, including meloxicam. Data from this study have important clinical relevance and should be used to inform practitioners’ drug selection of a COX-1 sparing or traditional NSAID and dose selection and to provide knowledge of the duration for the four NSAIDs studied.  相似文献   

13.
14.
OBJECTIVE: To use force plate analysis to evaluate the analgesic efficacies of flunixin meglumine and phenylbutazone administered i.v. at typical clinical doses in horses with navicular syndrome. ANIMALS: 12 horses with navicular syndrome that were otherwise clinically normal. PROCEDURE: Horses received flunixin (1.1 mg/kg), phenylbutazone (4.4 mg/kg), or physiologic saline (0.9% NaCI; 1 mL/45 kg) solution administered IV once daily for 4 days with a 14-day washout period between treatments (3 treatments/horse). Before beginning treatment (baseline) and 6, 12, 24, and 30 hours after the fourth dose of each treatment, horses were evaluated by use of the American Association of Equine Practitioners lameness scoring system (half scores permitted) and peak vertical force of the forelimbs was measured via a force plate. RESULTS: At 6, 12, and 24 hours after the fourth treatment, subjective lameness evaluations and force plate data indicated significant improvement in lameness from baseline values in horses treated with flunixin or phenylbutazone, compared with control horses; at those time points, the assessed variables in flunixin- or phenylbutazone-treated horses were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: In horses with navicular syndrome treated once daily for 4 days, typical clinical doses of flunixin and phenylbutazone resulted in similar significant improvement in lameness at 6, 12, and 24 hours after the final dose, compared with findings in horses treated with saline solution. The effect of flunixin or phenylbutazone was maintained for at least 24 hours. Flunixin meglumine and phenylbutazone appear to have similar analgesic effects in horses with navicular syndrome.  相似文献   

15.
OBJECTIVES: To determine the in vitro effect of prostaglandin E2 (PGE2), PGF2alpha, PGI2; and nonsteroidal anti-inflammatory drugs (NSAID; ie, flunixin meglumine, ketoprofen, carprofen, and phenylbutazone) on contractile activity of the equine dorsal colon, ventral colon, and pelvic flexure circular and longitudinal smooth muscle. ANIMALS: 26 healthy horses. PROCEDURE: Tissue collected from the ventral colon, dorsal colon, and pelvic flexure was cut into strips and mounted in a tissue bath system where contractile strength was determined. Incremental doses of PGE2, PGF2alpha,, PGI2, flunixin meglumine, carprofen, ketoprofen, and phenylbutazone were added to the baths, and the contractile activity was recorded for each location and orientation of smooth muscle. RESULTS: In substance P-stimulated tissues, PGE2 and PGF2alpha enhanced contractility in the longitudinal smooth muscle with a decrease or no effect on circular smooth muscle activity. Prostaglandin I2 inhibited the circular smooth muscle response with no effect on the longitudinal muscle. The activity of NSAID was predominantly inhibitory regardless of location or muscle orientation. CONCLUSIONS AND CLINICAL RELEVANCE: In the equine large intestine, exogenous prostaglandins had a variable effect on contractile activity, depending on the location in the colon and orientation of the smooth muscle. The administration of NSAID inhibited contractility, with flunixin meglumine generally inducing the most profound inhibition relative to the other NSAID evaluated in substance P-stimulated smooth muscle of the large intestine. The results of this study indicate that prolonged use of NSAID may potentially predispose horses to develop gastrointestinal tract stasis and subsequent impaction.  相似文献   

16.
OBJECTIVE: To determine potency and selectivity of nonsteroidal anti-inflammatory drugs (NSAID) and cyclooxygenase- (COX-) specific inhibitors in whole blood from horses, dogs, and cats. SAMPLE POPULATION: Blood samples from 30 healthy horses, 48 healthy dogs, and 9 healthy cats. PROCEDURE: Activities of COX-1 and COX-2 were determined by measuring coagulation-induced thromboxane and lipopolysaccharide-induced prostaglandin E2 concentrations, respectively, in whole blood with and without the addition of various concentrations of phenylbutazone, flunixin meglumine, ketoprofen, diclofenac, indomethacin, meloxicam, carprofen, 5-bromo-2[4-fluorophenyl]-3-14-methylsulfonylphenyl]-thiophene (DuP 697), 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2(5H)-furan one (DFU), 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl)phenyl)-2-(5H)-furanone (MF-tricyclic), and celecoxib. Potency of each test compound was determined by calculating the concentration that resulted in inhibition of 50% of COX activity (IC50). Selectivity was determined by calculating the ratio of IC50 for COX-1 to IC50 for COX-2 (COX-1/COX-2 ratio). RESULTS: The novel compound DFU was the most selective COX-2 inhibitor in equine, canine, and feline blood; COX-1/COX-2 ratios were 775, 74, and 69, respectively. Carprofen was the weakest inhibitor of COX-2, compared with the other COX-2 selective inhibitors, and did not inhibit COX-2 activity in equine blood. In contrast, NSAID such as phenylbutazone and flunixin meglumine were more potent inhibitors of COX-1 than COX-2 in canine and equine blood. CONCLUSIONS AND CLINICAL RELEVANCE: The novel COX-2 inhibitor DFU was more potent and selective in canine, equine, and feline blood, compared with phenylbutazone, flunixin meglumine, and carprofen. Compounds that specifically inhibit COX-2 may result in a lower incidence of adverse effects, compared with NSAID, when administered at therapeutic dosages to horses, dogs, and cats.  相似文献   

17.
Intravenous infusion of Pasteurella hemolytica endotoxin caused marked increases in the plasma levels of thromboxane B2 (TxB2), prostaglandins (PG) and serotonin in sheep. The control values for TxB2, 6-keto-PGF1 alpha, PGF2 alpha, and serotonin before endotoxin infusion averaged 283 +/- 53 (standard error of mean), 281 +/- 14 and 199 +/- 27 pg/ml and 57 +/- 3 ng/ml, respectively. At 50 min during endotoxin infusion, these values were increased to their maximum of 376, 339, 325 and 202% of control, respectively. Body temperature increased from the control value of 39.5 +/- 0.1 degrees C to a maximum of 41.5 +/- 0.1 degrees C at 200-300 min of infusion. In the second part of this study, we have examined the effects of ibuprofen on endotoxin-induced increases in plasma PG, TxB2, and serotonin levels and body temperature. The control values for TxB2, 6-keto-PGF1 alpha, PGF2 alpha, and temperature prior to ibuprofen and endotoxin infusion averaged 238 +/- 35, 335 +/- 44 and 248 +/- 28 pg/ml, 65 +/- 3 ng/ml and 40.1 +/- 0.2 degrees C, respectively. A loading dose (15 mg/kg) of ibuprofen was followed by infusion of endotoxin (12 micrograms/kg) and ibuprofen (43.3 mg/kg) over 500 min. Plasma levels of 6-keto-PGF1 alpha and serotonin increased only to 131 and 149% of control at 50 min of infusion, and levels of PGF2 alpha and TxB2 decreased to 50 and 80% of control at 100 and 150 min of infusion, respectively. Temperature remained unchanged. Ibuprofen effectively suppressed endotoxin-induced increases in the plasma levels of TxB2, 6-keto-PGF1 alpha, PGF2 alpha, and serotonin and body temperature. It was concluded from the present study that nonsteroidal anti-inflammatory drugs as an adjunct to antibiotic therapy might have a rational basis in treatment of endotoxin toxicity.  相似文献   

18.
Plasma concentrations of thromboxane and prostaglandin I2 (PGI2) before and after IV injection of endotoxin and resulting hemodynamic changes were evaluated. Effects of flunixin meglumine on plasma concentrations of these prostaglandins and the related hemodynamic changes were also determined. Shock was induced in 2 groups of anesthetized dogs. Four dogs were given endotoxin only and 4 dogs were given endotoxin and then were treated with flunixin meglumine. Arterial blood pressure (BP), cardiac output (CO), and heart rate were measured, and blood samples were collected at postendotoxin hours (PEH) 0, 0.1, 0.25, 0.5, 1, 2, 3, and 4. Plasma thromboxane and PGI2 concentrations were increased in canine endotoxic shock. Thromboxane concentration was highest early in shock, and appeared to be associated with an initial decrease in BP and CO. The increased concentration of PGI2 was associated with systemic hypotension at PEH 1 to 2. Treatment of dogs with flunixin meglumine at PEH 0.07 prevented further increase of thromboxane and blocked the release of PGI2, resulting in an increased CO, BP, and tissue aerobic metabolism.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Absorption of endotoxin across ischaemic-injured mucosa is a major cause of mortality after colic surgery. Recent studies have shown that flunixin meglumine retards mucosal repair. Systemic lidocaine has been used to treat post operative ileus, but it also has novel anti-inflammatory effects that could improve mucosal recovery after ischaemic injury. HYPOTHESIS: Systemic lidocaine ameliorates the deleterious negative effects of flunixin meglumine on recovery of mucosal barrier function. METHODS: Horses were treated i.v. immediately before anaesthesia with either 0.9% saline 1 ml/50 kg bwt, flunixin meglumine 1 mg/kg bwt every 12 h or lidocaine 1.3 mg/kg bwt loading dose followed by 0.05 mg/kg bwt/min constant rate infusion, or both flunixin meglumine and lidocaine, with 6 horses allocated randomly to each group. Two sections of jejunum were subjected to 2 h of ischaemia by temporary occlusion of the local blood supply, via a midline celiotomy. Horses were monitored with a behavioural pain score and were subjected to euthanasia 18 h after reversal of ischaemia. Ischaemic-injured and control jejunum was mounted in Ussing chambers for measurement of transepithelial electrical resistance (TER) and permeability to lipopolysaccharide (LPS). RESULTS: In ischaemic-injured jejunum TER was significantly higher in horses treated with saline, lidocaine or lidocaine and flunixin meglumine combined, compared to horses treated with flunixin meglumine. In ischaemic-injured jejunum LPS permeability was significantly increased in horses treated with flunixin meglumine alone. Behavioural pain scores did not increase significantly after surgery in horses treated with flunixin meglumine. CONCLUSIONS: Treatment with systemic lidocaine ameliorated the inhibitory effects of flunixin meglumine on recovery of the mucosal barrier from ischaemic injury, when the 2 treatments were combined. The mechanism of lidocaine in improving mucosal repair has not yet been elucidated.  相似文献   

20.
The purpose of this study was to investigate the in vitro effects of flunixin meglumine, a cyclo-oxygenase inhibitor, and ketoprofen, a reported cyclo-oxygenase and lipoxygenase inhibitor, on the synthesis of cyclo-oxygenase end-products thromboxane B2 and prostaglandin E2, lipoxygenase derived 12-hydroxyeicosatetraenoic acid, tumor necrosis factor and tissue factor. Six adult horses were each randomly administered flunixin meglumine (1.1 mg/kg) or ketoprofen (2.2 mg/kg) intravenously every 12 hours with the drug treatments separated by two weeks. Blood samples were obtained prior to initiating treatment, the last day of treatment and for two consecutive days after the termination of treatment for measurement of serum concentrations of thromboxane B2 as well as isolation of peripheral blood monocytes. Quantitation of unstimulated, endotoxin- and calcium ionophore-induced synthesis of thromboxane B2, prostaglandin E2, 12-hydroxyeicosatetraenoic acid, tumor necrosis factor and tissue factor by peripheral blood monocytes was performed in vitro. Both flunixin meglumine and ketoprofen significantly decreased serum concentrations of thromboxane B2 demonstrating in vivo cyclo-oxygenase inhibition. There were no significant differences between drug treatment groups in the in vitro production of thromboxane B2, prostaglandin E2, 12-hydroxy-eicosatetraenoic acid, tumor necrosis factor or tissue factor. This study does not identify significant differences between the effects of flunixin meglumine and ketoprofen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号