首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calsequestrin is the major Ca(2+)-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its alpha-helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsequestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   

2.
The Ets family of transcription factors   总被引:8,自引:0,他引:8  
  相似文献   

3.
The expression of the alpha-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in alpha-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac alpha-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the alpha-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the alpha-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the alpha-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the alpha-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the alpha-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the alpha-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the alpha-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.  相似文献   

4.
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disorder characterized by a great variability in its clinical manifestations. The mutational basis underlying DM consists of an unstable (CTG)n trinucleotide repeat in the 3' untranslated region of the myotonic dystrophy protein kinase gene (DMPK). Conflicting results on DMPK gene expression in congenitally affected infants (CDM) have been published. Moreover, the prominence of satellite cells seen in muscle of CDM infants supports the notion that the congenital form is associated with an arrest in muscle development and suggests a role for the DMPK gene during differentiation and maturation of muscle. In order to clarify these findings, a comparative study of DMPK and myogenic factor mRNA levels was performed in developing mouse muscle tissues and cultured muscle cells at different developmental stages. Results show that DMPK gene expression is upregulated at a late stage of muscular development. This upregulation does not seem to depend on a given muscle specific bHLH factor.  相似文献   

5.
6.
7.
Emery-Dreifuss muscular dystrophy (EDMD) is an inherited muscular disorder characterized by the triad of progressive weakness in humero-peroneal muscles, early onset contractures and cardiomyopathy with conduction block that shows a high risk of sudden death. In 1994, the gene responsible for X-linked EDMD has been identified to Xq28 (designated as STA), that encodes a serine-rich protein of 254 amino acids, named emerin. In 1996, we discovered a nuclear membrane localization of emerin in the normal skeletal, cardiac and smooth muscles, but not in the tissues from patients with X-linked EDMD who had a nonsense mutation in the gene. In conclusion, molecular and genetic analyses of emerin are essential for accurate diagnosis of patients with EDMD.  相似文献   

8.
Adenoviruses are attractive vectors for gene transfer into cardiac muscle. However, their promiscuous tissue tropism, which leads to an ectopic expression of the transgene, is a considerable limitation. To restrict expression to cardiomyocytes, we have constructed two recombinant adenoviruses (Ad-MLC2-250betagal and Ad-MLC2-2100betagal) containing the beta-galactosidase reporter gene under the control of the 250- or 2100-bp rat ventricle-specific cardiac myosin light chain-2v promoter (MLC-2v). Our in vitro and in vivo data have evidenced that the 2100-bp promoter allows stronger beta-galactosidase activity than the 250-bp promoter and that the deleted promoter allows a weak beta-galactosidase expression in skeletal muscle-derived cells in vitro. In contrast to the in vitro results, the highly deleted MLC-2v promoter of 250 pb conserved its heart specificity in in ovo and in vivo when introduced into the adenovirus genome, indicating that the specificity of this promoter is neither altered by the inverted terminal repeat nor by the enhancer of the Ela promoter, both of which located in the 5' flanking region of the promoter. Systemic injections of both recombinant adenoviruses into chicken embryos showed beta-galactosidase expression mainly in the right ventricle of the heart. We have confirmed the cardiac specificity of both promoters in mammalian species after injection of both recombinant adenoviruses into the heart of adult rats in vivo. The comparison of both promoters in vitro and in vivo has shown that the 250-bp MLC-2v promoter is 80% less active than the 2100-bp MLC-2v promoter and has enabled us to conclude that the MLC-2v promoter of 2100 bp is the most appropriate for efficient expression of a reporter gene or a therapeutic cardiac gene (e.g., SERCA2a or minidystrophin gene).  相似文献   

9.
A strong sympathetic activation has been observed in heart failure and is the cause of beta-adrenergic desensitization in this condition. On the receptor level there is downregulation of beta1-adrenergic receptors and uncoupling of beta2-adrenoceptors. The latter mechanism has been related to an increased activity and gene expression of beta-adrenoceptor kinase in failing myocardium, leading to phosphorylation and uncoupling of receptors. beta3-Adrenoceptors mediate negative inotropic effects, but alterations in these receptors are not known. In addition, an increase in inhibitory G protein alpha subunits (Gi alpha) has been suggested to be causally linked to adenylyl cyclase desensitization in heart failure. In contrast, the catalytic subunit of adenylyl cyclase, stimulatory G protein alpha and betagamma subunits, have been observed to be unchanged. Recent evidence shows that increases in Gi alpha also depress adenylyl cyclase in compensated cardiac hypertrophy both in monogenic and polygenic and in secondary hypertension. These increases of Gi alpha can suppress adenylyl cyclase in the absence of beta-adrenergic receptor downregulation. Since cardiac hypertrophy in pressure overload is a strong predictor of cardiac failure, these observations indicate that adenylyl cyclase desensitization by Gi alpha may be a pathophysiologically relevant mechanism contributing to the progression from compensated cardiac hypertrophy to heart failure.  相似文献   

10.
Expression of tropomyosin protein, an essential component of the thin filament, has been found to be drastically reduced in cardiac mutant hearts of the Mexican axolotl (Ambystoma mexicanum) with no formation of sarcomeric myofibrils. Therefore, this naturally occurring cardiac mutation is an appropriate model to examine the effects of delivering tropomyosin protein or tropomyosin cDNA into the deficient tissue. In this study, we describe the replacement of tropomyosin by using a cationic liposome transfection technique applied to whole hearts in vitro. When mouse alpha-tropomyosin cDNA under the control of a cardiac-specific alpha-myosin heavy chain promoter was transfected into the mutant hearts, tropomyosin expression was enhanced resulting in the formation of well-organized sarcomeric myofibrils. Transfection of a beta-tropomyosin construct under control of the same promoter did not result in enhanced organization of the myofibrils. Transfection of a beta-galactosidase reporter gene did not result in the formation of organized myofibrils or increased tropomyosin expression. These results demonstrate the importance of alpha-tropomyosin to the phenotype of this mutation and to normal myofibril formation. Moreover, we have shown that a crucial contractile protein can be ectopically expressed in cardiac muscle that is deficient in this protein, with the resulting formation of organized sarcomeres.  相似文献   

11.
To study the late beta-cell-specific function of the homeodomain protein IPF1/PDX1 we have generated mice in which the Ipf1/Pdx1 gene has been disrupted specifically in beta cells. These mice develop diabetes with age, and we show that IPF1/PDX1 is required for maintaining the beta cell identity by positively regulating insulin and islet amyloid polypeptide expression and by repressing glucagon expression. We also provide evidence that IPF1/PDX1 regulates the expression of Glut2 in a dosage-dependent manner suggesting that lowered IPF1/PDX1 activity may contribute to the development of type II diabetes by causing impaired expression of both Glut2 and insulin.  相似文献   

12.
13.
The induction of the atrial natriuretic factor (ANF) gene during alpha 1-adrenergic stimulation of neonatal rat ventricular myocytes has served as a model for gene expression during cardiac muscle cell hypertrophy. This study describes and identifies a single regulatory element that mediates expression of the ANF gene. Deletional mutations were generated in a 639-bp fragment of the ANF promoter that confers alpha 1-adrenergic inducibility to a luciferase reporter gene in transient transfection assays in ventricular myocytes. The results of gel mobility shift and diethylpyrocarbonate (DEPC) interference studies with nuclear cardiac cell extracts identified the nucleotide contract points for a novel A/T-rich element (ANF-AT) at positions -582/-575 that partially mediates alpha 1-adrenergic inducibility. Mutations in the ANF-AT element reduced alpha-adrenergic inducibility of an ANF-TK-luciferase fusion gene in cardiac cells by 35% but had no effect on expression in other muscle and non-muscle cells tested. Gel mobility supershift assays with antibodies directed against the MEF-2 protein, the homeobox protein MHox, or the zinc finger protein HF-1b, document that these factors are not major components of the endogenous ANF-AT binding activity in cardiac muscle cells. The current study provides evidence for a role for a novel A/T-rich element in the regulation of ANF gene expression in cardiac ventricular myocytes.  相似文献   

14.
In the leg and wing imaginal discs of Drosophila, the expression domains of the homeobox genes aristaless (al) and Distal-less (Dll) are defined by the secreted signaling molecules Wingless (Wg) and Decapentaplegic (Dpp). Here, the roles played by al and Dll in patterning the legs and wings have been investigated through loss of function studies. In the developing leg, al is expressed at the presumptive tip and a molecularly defined null allele of al reveals that its only function in patterning the leg appears to be to direct the growth and differentiation of the structures at the tip. In contrast, Dll has previously been shown to be required for the development of all of the leg more distal than the coxa. Dll protein can be detected in a central domain in leg discs throughout most of larval development, and in mature discs this domain corresponds to the distal-most region of the leg, the tarsus and the distal tibia. Clonal analysis reveals that late in development these are the only regions in which Dll function is required. However, earlier in development Dll is required in more proximal regions of the leg suggesting it is expressed at high levels in these cells early in development but not later. This reveals a correlation between a temporal requirement for Dll and position along the proximodistal axis; how this may relate to the generation of the P/D axis is discussed. Dll is required in the distal regions of the leg for the expression of tarsal-specific genes including al and bric-a-brac. Dll mutant cells in the leg sort out from wild-type cells suggesting one function of Dll here is to control adhesive properties of cells. Dll is also required for the normal development of the wing, primarily for the differentiation of the wing margin.  相似文献   

15.
16.
There is now clear evidence that receptor-dependent phospholipase D is present in myocardium. This novel signal transduction pathway provides an alternative source of 1,2-diacylglycerol, which activates isoforms of protein kinase C. The members of the protein kinase C family respond differently to various combinations of Ca2+, phosphatidylserine, molecular species of 1,2-diacylglycerol and other membrane phospholipid metabolites including free fatty acids. Protein kinase C isozymes are responsible for phosphorylation of specific cardiac substrate proteins that may be involved in regulation of cardiac contractility, hypertrophic growth, gene expression, ischemic preconditioning and electrophysiological changes. The initial product of phospholipase D, phosphatidic acid, may also have a second messenger role. As in other tissues, the question how the activity of phospholipase D is controlled by agonists in myocardium is controversial. Agonists, such as endothelin-1, atrial natriuretic factor and angiotensin II that are shown to activate phospholipase D, also potently stimulate phospholipase C-beta in myocardium. PMA stimulation of protein kinase C inactivates phospholipase C and strongly activates phospholipase D and this is probably a major mechanism by which agonists that promote phosphatidyl-4,5-bisphosphate hydrolysis secondary activate phosphatidylcholine-hydrolysis. On the other hand, one group has postulated that formation of phosphatidic acid secondary activates phosphatidyl-4,5-bisphosphate hydrolysis in cardiomyocytes. Whether GTP-binding proteins directly control phospholipase D is not clearly established in myocardium. Phospholipase D activation may also be mediated by an increase in cytosolic free Ca2+ or by tyrosine-phosphorylation.  相似文献   

17.
18.
Mutations in the Drosophila gene polo cause abnormal mitotic and meiotic divisions. This gene encodes a 577-amino-acid protein that has an N-terminal putative kinase domain and a 300-residue C-terminal domain. In budding yeast, a homologous kinase is encoded by CDC5 (ref. 3), a gene required for nuclear division late in the mitotic cycle and during meiosis. Murine homologues have also been described. Here we show that the polo gene product immunoprecipitated from extracts of single Drosophila embryos can phosphorylate casein in vitro, and that the kinase activity peaks cyclically at late anaphase/telophase. This contrasts with the cyclical activity of cyclin B-associated p34cdc2 kinase, which is maximal upon entry into mitosis during the rapid cycles of mitosis in the syncytium.  相似文献   

19.
The Drosophila gene Serrate encodes a membrane spanning protein, which is expressed in a complex pattern during embryogenesis and larval stages. Loss of Serrate function leads to larval lethality, which is associated with several morphogenetic defects, including the failure to develop wings and halteres. Serrate has been suggested to act as a short-range signal during wing development. It is required for the induction of the organising centre at the dorsal/ventral compartment boundary, from which growth and patterning of the wing is controlled. In order to understand the regulatory network required to control the spatially and temporally dynamic expression of Serrate, we analysed its cis-regulatory elements by fusing various genomic fragments upstream of the reporter gene lacZ. Enhancer elements reflecting the expression pattern of endogenous Serrate in embryonic and postembryonic tissues could be confined to 26 kb of genomic DNA, including 9 kb of transcribed region. Expression in some embryonic tissues is under the control of multiple enhancers located in the 5' region and in intron sequences. The data presented here provide the tools to unravel the genetic network which regulates Serrate during different developmental stages in diverse tissues.  相似文献   

20.
The retinoblastoma family of proteins, also known as pocket proteins, includes the product of the retinoblastoma susceptibility gene and the functionally and structurally related proteins p107 and p130. Pocket proteins control growth processes in many cell types, and this has been linked to the ability of pocket proteins to interact with a multitude of cellular proteins that regulate gene expression at various levels. By regulating gene expression, pocket proteins control cell cycle progression, cell cycle entry and exit, cell differentiation and apoptosis. This review will focus on the mechanisms of regulation of pocket proteins and how modulation of pocket protein levels and phosphorylation status regulate association with their cellular targets. The coordinated regulation of pocket proteins provides the cells with a competence mechanism for passage through certain cell growth and differentiation transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号