首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
Protein microarray development is absolutely dependent upon the ability to construct interfaces capable of specific, stable, sensitive, and designable recognition of specific proteins. Peptide aptamers, being peptide recognition moieties presented and constrained by a robust scaffold protein, offer one possible solution. The relative uniformity of a scaffold protein across potentially many thousands of arrayed peptide aptamers is predicted to simplify the production of microarrays. This paper describes the generation and assaying characteristics of a scaffold protein adlayer. Orientational control of the scaffold protein STM, a triply mutated form of the stable intracellular protein inhibitor stefin A is achieved with a surface cysteine residue, which leads to the presentation of the scaffold recognition surface to solution. Operational stability of the system is excellent, with only a minor decrease in detection sensitivity over time (less than 1% h-1). We use this system to establish a surface plasmon resonance assay offering a limit of detection of 1 nM (150 ng mL-1) and determine the affinity constant of interaction of STM for a cognate antibody to be KD = 1.47 +/- 0.23 nM. Thus, we have established a solid foundation for the future creation of highly multiplexed peptide aptamer microarrays that will be compatible with a broad range of label-free detection technologies.  相似文献   

2.
We report the quantitative measurement of aptamer-protein interactions using backscattering interferometry (BSI) and show that BSI can determine when distinct binding regions are accessed. As a model system, we utilized two DNA aptamers (Tasset and Bock) that bind to distinct sites of a target protein (human α-thrombin). This is the first time BSI has been used to study a multivalent system in free solution wherein more than one ligand binds to a single target. We measured aptamer equilibrum dissociation constants (K(d)) of 3.84 nM (Tasset-thrombin) and 5.96 nM (Bock-thrombin), in close agreement with the literature. Unexpectedly, we observed allosteric effects such that the binding of the first aptamer resulted in a significant change in the binding affinity of the second aptamer. For example, the K(d) of Bock aptamer binding to preformed Tasset-thrombin complexes was 7-fold lower (indicating higher affinity) compared to binding to thrombin alone. Preliminary modeling efforts suggest evidence for allosteric linkage between the two exosites.  相似文献   

3.
Selection of aptamers against live bacterial cells   总被引:2,自引:0,他引:2  
Hamula CL  Zhang H  Guan LL  Li XF  Le XC 《Analytical chemistry》2008,80(20):7812-7819
Single-stranded DNA or RNA aptamer molecules have usually been selected against purified target molecules. To eliminate the need of purifying target molecules on the cell surface, we have developed a selection technique using live bacterial cells in suspension as targets, to select for ssDNA aptamers specific to cell surface molecules. Lactobacillus acidophilus cells were chosen to demonstrate proof of principle based on their high abundance of surface molecules (potential targets). Aptamer pools obtained after 6-8 rounds of selection demonstrated high affinity for and selective binding with L. acidophilus cells when tested via flow cytometry, microscopy, and fluorescence measurements. Out of 27 aptamers that were cloned and sequenced, one sequence, hemag1P, was found to bind to L. acidophilus much more strongly and specifically than other cells tested. This aptamer was predicted to have a tight hairpin secondary structure. On average, an estimated 164 +/- 47 aptamer molecules were bound to a target cell with an apparent K d of 13 +/- 3 nM. A likely putative molecular target of hemag1P is the S-layer protein on the cell surface.  相似文献   

4.
Many analytical techniques benefit greatly from the use of affinity reagent pairs, wherein each reagent recognizes a discrete binding site on a target. For example, antibody pairs have been widely used to dramatically increase the specificity of enzyme linked immunosorbent assays (ELISA). Nucleic acid-based aptamers offer many advantageous features relative to protein-based affinity reagents, including well-established chemical synthesis, thermostability, and low production cost. However, the generation of suitable aptamer pairs has posed a significant challenge, and few such pairs have been reported to date. To address this important challenge, we present multivalent aptamer isolation systematic evolution of ligands by exponential enrichment (MAI-SELEX), a technique designed for the efficient selection of aptamer pairs. In contrast to conventional selection methods, our method utilizes two selection modules to generate separate aptamer pools that recognize distinct binding sites on a single target. Using MAI-SELEX, we have isolated two groups of 2'-fluoro-modified RNA aptamers that specifically recognize the αV or β3 subunits of integrin αVβ3. These aptamers exhibit low nanomolar affinities for their targets, with minimal cross-reactivity to other closely related integrin homologues. Moreover, we show that these aptamer pairs do not interfere with each other's binding and effectively detect the target even in complex mixtures such as undiluted serum.  相似文献   

5.
We coin the term "smart aptamers" -- aptamers with predefined binding parameters (k(on), k(off), Kd) of aptamer-target interaction. Aptamers, in general, are oligonucleotides, which are capable of binding target molecules with high affinity and selectivity. They are considered as potential therapeutic targets and also thought to rival antibodies in immunoassay-like analyses. Aptamers are selected from combinatorial libraries of oligonucleotides by affinity methods. Until now, technological limitations have precluded the development of smart aptamers. Here, we report on two kinetic capillary electrophoresis techniques applicable to the selection of smart aptamers. Equilibrium capillary electrophoresis of equilibrium mixtures was used to develop aptamers with predefined equilibrium dissociation constants (Kd), while nonequilibrium capillary electrophoresis of equilibrium mixtures facilitated selection of aptamers with different dissociation rate constants (k(off)). Selections were made for MutS protein, for which aptamers have never been previously developed. Both theoretical and practical aspects of smart aptamer development are presented, and the advantages of this new type of affinity probes are described.  相似文献   

6.
Wang XL  Li F  Su YH  Sun X  Li XB  Schluesener HJ  Tang F  Xu SQ 《Analytical chemistry》2004,76(19):5605-5610
Currently, methods for protein detection are not as sensitive and specific as methods for detection of specific nucleic acid sequences. Here, we present an analogous technique for detection of proteins using aptamers as ligands for target binding. We have named this method the aptamer-based exonuclease protection assay. We applied a special oligonucleotide probe containing a thrombin aptamer, which has the capacity to recognize thrombin with high affinity and specificity. The aptamer probe is a 22-base-long single-strand oligonucleotide with the thrombin aptamer sequence at the 3'-terminus and 7 additional nucleotides at the 5'-terminus, which is able to bind thrombin with high affinity and specificity. In the exonuclease protection assay, thrombin binds the aptamer and thereby protects it from degradation by exonuclease I, whereas any unbound aptamer probe is degraded by exonuclease I. Subsequently, the aptamer probes that were protected from exonuclease I by thrombin act as linkers to join two free connectors, which contain sequences matching the probe. The joined products, which reflect the identity and amount of the target protein, are amplified by PCR. The exonuclease protection assay is extremely sensitive, since it is based on PCR amplification. This method can detect as few as several hundred molecules of target protein without using washes or separations. In addition, this new method for protein detection is simple and inherits all the advantages of aptamers. The mechanism, moreover, may be generalized and used for other forms of protein analysis.  相似文献   

7.
8.
To detect the target molecules, aptamers are currently focused on and the use of aptamers for biosensing is particularly interesting, as aptamers could substitute antibodies in bioanalytical sensing. So this paper describes the novel electrochemical system for protein in sandwich manner by using the aptamers and the scanning electrochemical microscope (SECM). For protein detection, sandwich system is ideal since labeling of the target protein is not necessary. To develop the electrochemical protein sensor system, thrombin was chosen as a target protein since many aptamers for it were already reported and two different aptamers, which recognize different positions of thrombin, were chosen to construct sandwich type sensing system. In order to obtain the electrochemical signal, the glucose oxidase (GOD) used for labeling the detection aptamers since it has large amount of stability in aqueous solution. One aptamer was immobilized onto the gold electrode and the other aptamer for detection was labeled with GOD for generation of the electric signal. Thrombin was detected in sandwich manner with aptamer immobilized onto the gold electrode and the GOD labeled aptamer. The enzymatic signal, generated from glucose addition after the formation of the complex of thrombin, was measured. The generation-collection mode of SECM was used for amperometric H2O2 detection.  相似文献   

9.
We have studied the effect of metal ions on the specific interaction between a protein, immunoglobulin E (IgE), and its 37-nt DNA aptamer with atomic force microscopy (AFM). Protein aptamers are a new class of synthetic single-stranded DNA/RNA oligonucleotide generated from in vitro selection to selectively bind with target proteins. The IgE aptamers have been developed and are expected to be promising reagents in IgE detection and new anti-allergic drug development. It is known that the presence of metal ions in the buffer usually has a strong effect on the affinity of single-stranded DNA for protein. In this work, the effect of two representative monovalent ion and divalent ion on the binding of IgE and the aptamer has been studied at the single-molecule level. The results from the AFM force measurements show that the metal ions not only reduce the single-molecular rupture force but also reduce the number of bonds formed between IgE and the aptamer.  相似文献   

10.
Oh SS  Ahmad KM  Cho M  Kim S  Xiao Y  Soh HT 《Analytical chemistry》2011,83(17):6883-6889
The generation of nucleic acid aptamers with high affinity typically entails a time-consuming, iterative process of binding, separation, and amplification. It would therefore be beneficial to develop an efficient selection strategy that can generate these high-quality aptamers rapidly, economically, and reproducibly. Toward this goal, we have developed a method that efficiently generates DNA aptamers with slow off-rates. This methodology, called VDC-MSELEX, pairs the volume dilution challenge process with microfluidic separation for magnetic bead-assisted aptamer selection. This method offers improved aptamer selection efficiencies through the application of highly stringent selection conditions: it retrieves a small number (<10(6)) of magnetic beads suspended in a large volume (>50 mL) and concentrates them into a microfluidic chamber (8 μL) with minimal loss for continuous washing. We performed three rounds of the VDC-MSELEX using streptavidin (SA) as the target and obtained new DNA aptamer sequences with low nanomolar affinity that specifically bind to the SA proteins.  相似文献   

11.
Highly sensitive and multiplexed detection of clinically relevant proteins in biologically complex samples is crucial for the advancement of clinical proteomics. In recent years, aptamers have emerged as useful tools for protein analysis due to their specificity and affinity for protein targets as well as their compatibility with particle-based detection systems. In this study, we demonstrate the highly sensitive detection of human α-thrombin on encoded hydrogel microparticles functionalized with an aptamer capture sequence. We use static imaging and microfluidic flow-through analysis techniques to evaluate the detection capabilities of the microgels in sandwich-assay formats that utilize both aptamers and antibodies for the reporting of target-binding events. Buffers and reagent concentrations were optimized to provide maximum reaction efficiency while still maintaining an assay with a simple workflow that can be easily adapted to the multiplexed detection of other clinically relevant proteins. The three-dimensional, nonfouling hydrogel immobilization scaffold used in this work provides three logs of dynamic range, with a limit of detection of 4 pM using a single aptamer capture species and without the need for spacers or signal amplification.  相似文献   

12.
Displacement enzyme linked aptamer assay   总被引:3,自引:0,他引:3  
Immense effort has been placed on the realization of immunoassays exploiting displacement of a suboptimum target, due to the ease of use and applicability to immunochromatographic strips and immunosensors. Most of the efforts reported to date focus on the use of a suboptimal target that is displaceable by the target toward which the antibody has higher affinity. Limited success has been achieved due to difficulty in obtaining suboptimal targets to which the antibody has enough affinity to bind while at the same time having lower levels of affinity in comparison to the target to facilitate displacement. Aptamers are synthetic oligonucleotides specifically selected to bind a certain target. Thanks to their high affinity and sensitivity, aptamers appear as alternative candidates to antibodies for analytical devices and several enzyme-linked aptamer assays and aptasensors have been reported. Aptamers, in contrast to antibodies, require the formation of a three-dimensional structure for target binding and can thus be anticipated to have a much higher affinity for binding its target rather than a modified form of the target (e.g., enzyme-labeled target). This phenomenon can be exploited for the development of a displacement assay, using enzyme-labeled target as a suboptimal displaceable molecule. Here, we report the first demonstration of the exploitation of an aptamer in an extremely rapid and highly sensitive displacement assay. Surface plasmon resonance studies demonstrated the thrombin-binding aptamer to have a lower affinity for enzyme-labeled thrombin than unmodified thrombin, with respective K(D) of 1.1 x 10(-8) and 2.9 x 10(-9) M. The assay is extremely rapid, requiring only 10 min for completion, and exhibits a detection limit lower than that obtainable with competitive enzyme-linked aptamer assays and comparable to that of hybrid aptamer-antibody assays. Optimal storage conditions for precoated microtiter plates (consisting of coated aptamer and captured labeled target) were elucidated, and the results demonstrated their amenability to long-term storage, facilitating commercially viable displacement enzyme-linked aptamer assays that simply require sample addition, with a total assay time, including color development, of 30 min.  相似文献   

13.
Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to a wide range of target molecules with high affinity and specificity. As nucleic acids, aptamers can undergo denaturation, but the process is reversible. As a result of this stability and the possibility of automated selection of aptamers, these oligonucleotides are highly promising capture molecules in microarray formats. In this study, his-tagged proteins and an aptamer directed against the his-tag were chosen as a model system. Different factors affect the activity of aptamers immobilized on a solid support like a microarray surface. The orientation of the immobilized aptamer plays an important role in correct aptamer folding and, thus, in effective binding of the corresponding target. Other important parameters identified in this work are the microarrays' surface charge as well as the length of the spacer between aptamer and solid support. These parameters were investigated systematically, resulting in the development of an aptamer-based microarray for detection of his-tagged proteins. The general applicability of the developed immobilization strategy was demonstrated by utilization of three different aptamers.  相似文献   

14.
The specificity and affinity of aptamers for their cognate ligands are comparable to those of antibodies for antigens. To use aptamers effectively in high-throughput assays in a microarray format, to analyze various analytes, we developed a strategy in which the aptamer was split into two nonfunctional units and allowed to reassemble into the functional aptamer by the cognate ligand. We have named this method "analyte-dependent oligonucleotide modulation assay" (ADONMA). As proof-of-principle, we used oligonucleotides derived from the aptamer RNA against HIV-1 Tat and demonstrated, with both titer plates and plastic slide chips, that specifically in the presence of Tat or its peptide, the two oligos reconstituted the core binding regions of Tat. Thus, these results suggest that ADNOMA has the potential for use in nucleic acid microarrays for detecting various ligands.  相似文献   

15.
X Fang  Z Cao  T Beck  W Tan 《Analytical chemistry》2001,73(23):5752-5757
Monitoring proteins in real time and in homogeneous solution has always been a difficult task. We have applied a fluorophore-labeled molecular probe based on a high-affinity platelet-derived growth factor (PDGF) aptamer for the ultrasensitive detection of PDGF in homogeneous solutions. The aptamer is labeled with fluorescein to specifically bind with the PDGF protein. Fluorescence anisotropy is used for the real-time monitoring of the binding between the aptamer and the protein. When the labeled aptamer is bound with its target protein, the rotational motion of the fluorophore attached to the complex becomes much slower because of an increased molecular weight after binding, resulting in a significant fluorescence anisotropy change. Using the anisotropy change, we are able to detect the binding events between the aptamer and the protein in real time and in homogeneous solutions (detection without separation). This assay is highly selective and ultrasensitive. It can detect PDGF in the subnanomolar range. The new method for protein detection is simple and inherits all of the advantages of molecular aptamers. Efficient oncoprotein detection using aptamer-based fluorescence anisotropy measurement will find wide applications in protein monitoring, in cancer diagnosis as well as other studies in which protein analysis is important.  相似文献   

16.
Gold nanoparticle colorimetry assay using aptamers is a low cost and a highly effective means for detecting a wide range of biomolecular targets. In this work, this technique is used to detect the protein thrombin as a model system for understanding the relationship between the aptamer-target binding properties and the optical colorimetric response, as well as to gain insight on the secondary structures of the aptamers. The two known aptamers for thrombin, the 15-mer Bock and the 29-mer Tasset aptamer were conjugated to gold nanoparticles to form complexes that bind to thrombin upon contact. The Bock aptamer causes the aggregation of the nanoparticles and the concomitant reduction of the plasmon resonance peak, whereas the 29-mer Tasset aptamer, despite higher affinity, does not cause a spectral change. The data is understood on the basis of the difference in the number of binding sites available on thrombin for the respective aptamers. Additional results on single base substitutions suggest that the G-quadruplex secondary structure in the Bock aptamer is intermolecular and comprises of at least two interacting aptamer molecules. An estimate of the dissociation constant, derived from thrombin titration, is comparable to values reported in the literature.  相似文献   

17.
Wang J  Jiang Y  Zhou C  Fang X 《Analytical chemistry》2005,77(11):3542-3546
With the increasing applications of nucleic acid aptamers as a new class of molecular recognition probes in bioanalysis and biosensor development, the development of general and simple signaling strategies to transduce aptamer-target binding events to detectable signals is demanding. We have developed a new signaling method based on aptamers and a DNA molecular light switching complex, [Ru(phen)2(dppz)]2+, for sensitive protein detection. In this work, we have demonstrated the applicability of this signaling mechanism to small-molecule detection using ATP as a model target. Our results have shown that upon ATP binding to the folded aptamer where [Ru(phen)2(dppz)]2+ intercalated, the conformational change or distortion of the aptamer is large enough to cause a significant luminescence change of [Ru(phen)2(dppz)]2+. By monitoring the ATP-dependent luminescence intensity change, we have achieved ATP detection with high selectivity and high sensitivity down to 1 nM in homogeneous solution. The method is very simple without the needs for covalently labeling aptamers or using costly enzymes and multistep analysis as other reported fluorescence/luminescence assays for ATP. The successful detection of ATP indicates that using the signaling aptamers with [Ru(phen)2(dppz)]2+ is expected to be a general method for aptamer-based target detection.  相似文献   

18.
H Mei  T Bing  X Yang  C Qi  T Chang  X Liu  Z Cao  D Shangguan 《Analytical chemistry》2012,84(17):7323-7329
Aptamers are usually generated against a specific molecule. Their high selectivity makes them only suitable for studying specific targets. Since it is nearly impossible to generate aptamers for every molecule, it can be of great interest to select aptamers recognizing a common feature of a group of molecules in many applications. In this paper, we describe the selection of aptamers for indirect recognition of alkyl amino groups. Because amino groups are small and positive charged, we introduced a protection group, p-nitrobenzene sulfonyl (p-nosyl) to convert them into a form suitable for aptamer selection. Taking N(ε)-p-nosyl-l-lysine (PSL) as a target, we obtained a group of aptamers using the SELEX technique. Two optimized aptamers, M6b-M14 and M13a exhibit strong affinity to PSL with the K(d) values in the range of 2-5 μM. They also show strong affinity to other compounds containing p-nosyl-protected amino groups except those also possessing an α-carboxyl group. Both aptamers adopt an antiparallel G-quadruplex structure when binding to targets. An aptamer beacon based on M6b-M14 showed good selectivity toward the reaction mixture of p-nosyl-Cl and alkyl amino compounds, and could recognize lysine from amino acid mixtures indirectly, suggesting that aptamers against a common moiety of a certain type of molecules can potentially lead to many new applications. Through this study, we have demonstrated the ability to select aptamers for a specific part of an organic compound, and the chemical conversion approach may prove to be valuable for aptamer selection against molecules that are generally difficult for SELEX.  相似文献   

19.
Cancer cell targeting using multiple aptamers conjugated on nanorods   总被引:2,自引:0,他引:2  
Molecular recognition toward specific cells is a key issue for effective disease, such as cancer, diagnosis and therapy. Although many molecular probes such as aptamers and antibodies can recognize the unique molecular signatures of cancer cells, some of these probes only have relatively weak binding affinities. This results in poor signaling and hinders cell targeting. Here, we use Au-Ag nanorods (NRs) as a nanoplatform for multivalent binding by multiple aptamers on the rod to increase both the signal and binding strengths of these aptamers in cancer cell recognition. Up to 80 fluorophore-labeled aptamers can be attached on a 12 nm x 56 nm NR, resulting in a much stronger fluorescence signal than that of an individual dye-labeled aptamer probe. The molecular assembly of aptamers on the NR surfaces also significantly improves the binding affinity with cancer cells through simultaneous multivalent interactions with the cell membrane receptors. This leads to an affinity at least 26-fold higher than the intrinsic affinity of the original aptamer probes. As determined by flow cytometric measurements, an enhancement in fluorescence signal in excess of 300-fold is obtained for the NR-aptamer-labeled cells compared with those labeled by individual aptamer probes. Therefore, the molecular assembly of aptamers clearly shows potential applications for the elucidation of cells with low density of binding sites, or with relatively weak binding probes, and can thus greatly improve our ability to perform cellular imaging and targeting. This is an excellent example of using nanomaterials to develop advanced molecular binders with greatly improved properties for cellular studies.  相似文献   

20.
An aptamer-based quartz crystal protein biosensor   总被引:13,自引:0,他引:13  
We developed a quartz crystal biosensor designed to detect concentrations and ligand affinity parameters of free unlabeled proteins in real time. Using a model system with human IgE as the analyte and single-stranded DNA aptamers or an anti-IgE antibody as immobilized ligands, we could demonstrate that aptamers were equivalent to antibodies in terms of specificity and sensitivity. Both receptor types selectively detected 0.5 nmol/L of IgE. In addition, the aptamer receptors tolerated repeated affine layer regeneration after ligand binding and recycling of the biosensor with little loss of sensitivity. Because of the small size and nonprotein nature of the aptamers, they were immobilized in a dense, well-oriented manner, thus extending the linear detection range to 10-fold higher concentrations of IgE. In addition to demonstrating for the first time that an aptamer-based biosensor can specifically and quantitatively detect an analyte in various complex protein mixes, the aptamer-ligand proved to be relatively heat resistant and stable over several weeks. Since aptamers consist of nucleic acids, well-established chemistry can be applied to produce optimized affine layers on biosensors that may be developed to specifically detect proteins in solution for analysis of proteomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号