首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Quality-driven cross-layer optimized video delivery over LTE   总被引:2,自引:0,他引:2  
3GPP Long Term Evolution is one of the major steps in mobile communication to enhance the user experience for next-generation mobile broadband networks. In LTE, orthogonal frequency- division multiple access is adopted in the downlink of its E-UTRA air interface. Although cross-layer techniques have been widely adopted in literature for dynamic resource allocation to maximize data rate in OFDMA wireless networks, application-oriented quality of service for video delivery, such as delay constraint and video distortion, have been largely ignored. However, for wireless video delivery in LTE, especially delay-bounded real-time video streaming, higher data rate could lead to higher packet loss rate, thus degrading the user-perceived video quality. In this article we present a new QoS-aware LTE OFDMA scheduling algorithm for wireless real-time video delivery over the downlink of LTE cellular networks to achieve the best user-perceived video quality under the given application delay constraint. In the proposed approach, system throughput, application QoS constraints, and scheduling fairness are jointly integrated into a cross-layer design framework to dynamically perform radio resource allocation for multiple users, and to effectively choose the optimal system parameters such as modulation and coding scheme and video encoding parameters to adapt to the varying channel quality of each resource block. Experimental results have shown significant performance enhancement of the proposed system.  相似文献   

2.
针对正交频分多址(OFDMA)系统下行链路多业务自适应调度的问题,该文首先以最大化系统吞吐量为优化目标、每种业务的服务质量(QoS)保证为约束条件,建立了一种通用的多业务自适应资源分配模型。为解决此优化问题,提出了一种具体的自适应资源调度算法。该算法对实时业务按照用户选择最好的信道的原则分配尽可能少的资源以保证其QoS,对非实时业务把尽可能多的剩余资源按照信道选择最好的用户的原则进行分配,充分利用信道资源,提升系统容量。仿真结果表明,该算法保证了下行OFDMA系统吞吐量的同时,在实时业务的延时和丢包率等方面有一定的优越性。  相似文献   

3.
Cross-layer strategies for resource allocation in wireless networks are essential to guaranty an efficient utilization of the scarce resource. In this paper, we present an efficient radio resource allocation scheme based on PHY/MAC cross layer design and QoS-guaranteed scheduling for multi-user (MU), multi-service (MS), multi-input multi-output (MIMO) concept, orthogonal frequency division multiple access (OFDMA) systems. It is about a downlink multimedia transmission chain in which the available resources as power and bandwidth, are dynamically allocated according to the system parameters. Among these parameters, we can mention the physical link elements such as channel state information, spectral efficiency and error code corrector rate, and MAC link variables, which correspond to the users QoS requirements and the queue status. Primarily, we use a jointly method which parametrizes these system parameters, according to the total power, and the bit error rate constraints. Secondly, we propose a QoS-guaranteed scheduling that shares the sub-carriers to the users. These users request several type of traffic under throughput threshold constraints. The main objective in this work is to adjust the average throughput per service of each user, according to their needs and likewise to satisfy a great number of connexions. Subsequently, we consider a model of moderated compartmentalization between various classes of services by partitioning the total bandwidth into several parts. Each class of service will occupy a part of the bandwidth and will be transmitted over a maximum number of sub-carriers. The simulation results show that the proposed strategy provides a more interesting performance improvement (in terms of average data rate and user satisfaction) than other existing resource allocation schemes, such as nonadaptive resource allocation strategy. The performances are also analyzed and compared for the two multi-service multi-user MIMO–OFDMA systems; with sub-carriers partitioning and without sub-carriers partitioning.  相似文献   

4.
This article proposes a dynamic subcarrier and power allocation algorithm for multicell orthogonal frequency division multiple access (OFDMA) downlink system, based on inter-cell interference (ICI) mitigation. Different from other ICI mitigation schemes, which pay little attention to power allocation in the system, the proposed algorithm assigns channels to each user, based on proportional-fair (PF) scheduling and ICI coordination, whereas allocating power is based on link gain distribution and the loading bit based on adaptive modulation and coding (AMC) in base transceiver station (BTS). Simulation results show that the algorithm yields better performance for data services under fast fading.  相似文献   

5.
In this paper, we propose a joint resource allocation, routing, and connection admission control (CAC) scheme for uplink transmission in orthogonal frequency division multiple access (OFDMA) relay networks with cooperative relaying. For cooperative relaying, relay station can relay uplink data from mobile station (MS) to base station with cooperation of the MS using transmit diversity. Transmit diversity can be achieved by virtual MISO via distributed space–time coding. The proposed scheme jointly allocates OFDMA resources and selects path for each user with CAC to maximize the upink throughput of cooperative OFDMA relay networks. The basic OFDMA resource unit is considered as a resource element which is one subcarrier over one OFDMA symbol. An efficient multi-choice multi-dimensional knapsack (MMKP) algorithm is presented for the proposed scheme. The proposed MMKP algorithm provides a unified framework which is applicable to OFDMA networks with and without cooperative relaying. We evaluate the performance of the proposed scheme with and without cooperative relaying in a hilly terrain with heavy tree density by using OPNET-based simulation. We show that the cooperative relaying improve the uplink system throughput compared with non-cooperative relaying, and the proposed scheme outperforms the conventional link quality-based scheme in both cooperative and non-cooperative relay networks.  相似文献   

6.
Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.  相似文献   

7.
全频率复用的OFDMA系统中,小区间干扰严重降低了整个系统,特别是小区边缘的频谱效率。文中考虑了多小区放大转发系统下行链路的资源管理,须联合优化用户调度、载波和功率的分配,并设计了一个分布式的资源分配算法,算法基于本小区局部信息分步完成用户调度和功率控制,小区之间只需要较少的交互信息。仿真结果表明,文中算法较传统算法具有更好的系统性能。  相似文献   

8.
Many works have tackled on the problem of throughput and fairness optimization in cellular cooperative relaying systems. Considering firstly a two-user relay broadcast channel, we design a scheme based on superposition coding (SC) which maximizes the achievable sum-rate under a proportional fairness constraint. Unlike most relaying schemes where users are allocated orthogonally, our scheme serves the two users simultaneously on the same time-frequency resource unit by superposing their messages into three SC layers. The optimal power allocation parameters of each SC layer are derived by analysis. Next, we consider the general multi-user case in a cellular relay system, for which we design resource allocation algorithms based on proportional fair scheduling exploiting the proposed SC-based scheme. Numerical results show that the proposed algorithms allowing simultaneous user allocation outperform conventional schedulers based on orthogonal user allocation, both in terms of throughput and proportional fairness. These results indicate promising new directions for the design of future radio resource allocation and scheduling algorithms.  相似文献   

9.
提出了一种新的基于OFDM多用户通信系统的资源分配算法。该算法在总功率限制和用户数据率要求下,通过以下两步实现子载波、比特和功率的动态分配:第一步,基于用户的平均信道增益和数据率要求进行资源初分配(每个用户分配多少个子载波、功率);第二步,对步骤1中的结果进行调整,最终决定每个用户分配到的子载波、功率以及比特载入方式。相比于Hujun Yjn等人提出的另一种基于用户需求的算法,新算法的基站发射功率略有增加,但复杂度大为降低,在实际运用中更有利用价值。  相似文献   

10.
This paper introduces an transmit power allocation (TPA) algorithm considering dynamic channel allocation (DCA) for a reuse-partitioning- based Orthogonal frequency division multiple access (OFDMA)/FDD cellular system. The proposed reuse partitioning-based DCA algorithm guarantees quality of service (QoS) by considering fairness among mobile stations in an OFDMA/FDD system. However, to improve the SINR values for users around the cell edge and increase the overall system throughput compared with the conventional OFDMA/FDD system of frequency reuse factor (FRF) 1, an effective TPA algorithm is also combined with the proposed DCA to adjust the transmit power per user according to the average received SINR value. Simulation results show that the proposed DCA algorithm increases the sector throughput by about 25% when compared with the conventional case that do not apply the proposed DCA algorithm. When the proposed TPA is combined with the proposed DCA algorithm, a further increase in the sector throughput of about 6% is achieved than when using just the proposed DCA algorithm.  相似文献   

11.
Resource allocation problem in multiuser multiple input single output-orthogonal frequency division multiple access (MISO-OFDMA) systems with downlink beamforming for frequency selective fading channels is studied. The article aims at maximizing system throughput with the constraints of total power and bit error rate (BER) while supporting fairness among users. The downlink proportional fairness (PF) scheduling problem is reformulated as a maximization of the sum of logarithmic user data rate. From necessary conditions on optimality obtained analytically by Karush-Kuhn-Tucker (KKT) condition, an efficient user selection and resource allocation algorithm is proposed. The computer simulations reveal that the proposed algorithm achieves tradeoff between system throughput and fairness among users.  相似文献   

12.
Orthogonal Frequency Division Multiple Access (OFDMA) is an efficient multiple access method for the future wireless systems. This paper studies the adaptive subcarrier and bit allocation problem in OFDMA systems to support heterogeneous services. The goal of the considered resource optimization technique is to maximize the total system throughput under the overall transmit power constraint while guaranteeing the QoS requirement of realtime users and supporting proportional fairness among non-realtime users. First, we introduce a Rate Adaptive (RA) resource allocation algorithm for non-realtime users and a Margin Adaptive (MA) algorithm for realtime users. Then, based on the previous algorithms, a novel algorithm is proposed to allocate the resource to both classes of users, which makes an efficient tradeoff between the resource usage of realtime users and non-realtime users. The algorithm is locally optimal solution provided that the MA and RA algorithms are utilized. Also, to reduce the computational complexity, a suboptimal method based on the balancing of the average power per subcarrier is also introduced. Monte Carlo simulation results show that all the proposed algorithms outperform the existing counterparts. The results also show that the suboptimal method for heterogeneous services can efficiently reduce the computational complexity at the cost of very little performance degradation. This work was supported by the National Natural Science Foundation of China (Nos. 60472079, 60572115), and by the Natural Science Foundation of Zhejiang Province (No. Z104252), China.  相似文献   

13.
该文采用非合作博弈论的方法研究了多小区OFDMA系统中的动态资源分配问题,首先将各基站的发射功率平均分配给各子载波,然后由所有小区在每个子载波上独立地进行资源分配博弈,给出了用户调度与功率分配联合博弈框架。为了进一步简化,将用户调度和资源分配分开完成,通过将信道增益引入到定价函数中,提出了一种新的定价机制,建立了用户确定时的非合作功率分配博弈模型,分析了其纳什均衡的存在性和唯一性,并设计了具体的博弈算法。仿真结果表明,所提算法在保证吞吐量性能的同时,进一步提升了系统的公平性。  相似文献   

14.
The Multiple-Input Multiple-Output (MIMO) Non-Orthogonal Multiple Access (NOMA) based on Spatial Modulation (SM-MIMO-NOMA) system has been proposed to achieve better spectral efficiency with reduced radio frequency chains comparing to the traditional MIMO-NOMA system. To improve the performance of SM-MIMO-NOMA systems, we extend them to generalized spatial modulation scenarios while maintaining moderate complexity and fairness. In this paper, system spectral efficiency and transmission quality improvements are proposed by investigating a sum-rate maximization resource allocation problem that is subject to the total transmitted power, user grouping, and resource block constraints. To solve this non-convex and difficult problem, a graph-based user grouping strategy is proposed initially to maximize the mutual gains of intragroup users. An auxiliary-variable approach is then adopted to transform the power allocation subproblem into a convex one. Simulation results demonstrate that the proposed algorithm has better performance in terms of bit error rate and sum rates.  相似文献   

15.
一种自适应的OFDMA系统下行分组调度算法   总被引:1,自引:0,他引:1  
提出了一种适合于OFDMA(正交频分多址接入)系统的资源分配与调度算法,该算法利用物理层的信道信息和MAC层的队列状态信息,并综合考虑了数据分组传输的时延要求和业务的优先级,采取资源块与子载波分配相结合的资源分配方式。仿真结果表明,该算法在吞吐量和公平性方面都得到了较好的改善。  相似文献   

16.
This paper proposes an optimized scheduling scheme in OFDMA‐based WiMax networks to achieve both optimized system throughput and a complete QoS implementation for various types of traffic flows. Our scheduling scheme includes two components, one is the resource allocation for each user; the other is the QoS scheduling for various traffic sessions. Specifically an optimization problem is formulated to distribute all OFDMA channel resource among different competing users by exploiting the transmission adaption and multiuser diversity on each traffic channel. The optimized resource allocation can also be processed under different constraints to achieve different performance metrics. To ensure the WiMax QoS performance, we perform the resource allocation in a priority manner with respect to the different types of QoS requirements and get a desired transmission bandwidth for each user. Based on it we further schedule different traffic sessions at each user with respect to a proper admission control mechanism. The relevant solution and algorithms for our proposed scheduling scheme are presented in detail. Both the theoretical analysis and simulation results show that our scheme can achieve the key performance objectives such as complete QoS requirements, high channel transmission efficiency and optimal throughput over the whole OFDMA WiMax system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, new dynamic resource allocation algorithms are investigated for the downlink of multiuser multiple-input multiple-output orthogonal frequency-division multiple-access and space-division multiple-access (MU-MIMO-OFDMA/SDMA) systems. Firstly, a mathematical formulation of the optimization problem is presented with the objective of maximizing the total system throughput under the constraints of each user’s quality of service (QoS) requirement and the integer modulation orders available on each spatial subchannel. Secondly, since it is difficult to obtain the optimal solution to the joint optimization problem, the whole optimization procedure is divided into two steps, namely, the subcarrier-user scheduling and the resource allocation. In the first step, a new metric is proposed to measure the spatial compatibility of multiple users, each with multiple receive antennas, based on which a new scheduling algorithm is designed to identify the optimal sets of selected users over all subcarriers. In the second step, two dynamic resource allocation algorithms are developed to assign radio resources to the scheduled users subcarrier by subcarrier. Simulation results demonstrate that the proposed algorithms outperform the traditional allocation methods based on random scheduling scheme. Especially, the performance of the algorithm, combined with power reuse strategy, approaches closely to that of the optimal allocation method based on user selection.  相似文献   

18.
In multi-user OFDMA systems, adaptive resource allocation has been identified as one of the key technologies to have more flexibility and higher efficiency. Several adaptive subcarrier allocation algorithms with the objective to maximize spectral efficiency or fairness have been proposed. However, quality of service (QoS) requirement of each user may not be supported. Some algorithms considering user’s QoS requirement have been introduced, but they do not consider the case that every user’s QoS requirement cannot be guaranteed with limited resources. In this paper, we propose a maximum achievement rate allocation (MARA) algorithm as a new adaptive resource allocation algorithm. The proposed MARA algorithm has a goal to improve overall throughput while maximizing achievement rate, i.e., maximize the number of users meeting QoS requirements. In addition, we investigate that MARA is more effective when fractional frequency reuse (FFR) is adopted as a frequency partitioning scheme. Simulation results show that the MARA algorithm improves the achievement rate as well as overall throughput. Moreover, further performance gains are achieved when FFR is adopted.  相似文献   

19.
Modern wireless orthogonal frequency division multiple access (OFDMA) systems incorporate dynamic resource allocation (DRA), adaptive modulation and coding (AMC), and power control (PC) to exploit multiuser diversity and achieve higher system throughput. In the literature, only a few proposed algorithms deal with the contiguous DRA problem according to which a contiguous collection of resources can be allocated to each user. This paper formulates this high complexity problem, provides a suitable decision metric and a simple yet efficient solution. The proposed algorithm allocates in each step a contiguous collection of resources to the pending user that leads to the highest estimated correctly received number of bits. Simulation results show that, in this way, considerably improved performance can be achieved in terms of overall system throughput, spectral efficiency, and served traffic. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the problem of multiuser packet scheduling and resource allocation for video transmission over downlink OFDMA networks. A cross-layer approach is proposed to maximize the received video quality under the video quality fairness constraint. Unlike the previous methods in which the objective index is estimated the video quality in the unit of bit, the proposed algorithm develops the objective index in unit of packet, which is more fit for video transmission. In order to solve the optimization problem, a suboptimal algorithm of joint packet scheduling and resource allocation is proposed. The algorithm is compatible with the emerging wireless standards, such as IEEE 802.16. The simulation results show that the proposed method outperforms the conventional resource allocation schemes in terms of received video qualities and quality fairness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号