首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
为考察碱激发矿渣陶砂砂浆砌筑的砌体轴心抗拉性能,本文完成了强度等级介于Mb20~Mb65碱激发矿渣陶砂砂浆砌筑的60个空心砌块砌体试件的轴心抗拉试验。通过在墙片端孔灌注混凝土并对锚固于端孔混凝土的水平钢筋施加轴心拉力,考察了水灰比、砂灰比、Na_2O含量、水玻璃模数和碱激发矿渣陶砂砂浆抗压强度对空心砌块砌体轴心抗拉强度的影响。试验结果表明:碱激发矿渣陶砂砂浆砌筑的空心砌块砌体轴心抗拉强度随着砂浆抗压强度的增大而增大,但小于用水泥砂浆和混合砂浆砌筑的空心砌块砌体的轴心抗拉强度。基于试验结果,建立了以水灰比(介于0.44~0.53)、砂灰比(介于1.76~2.50)、Na_2O含量(介于4.4%~9.3%)、水玻璃模数(介于0~1.26)和碱激发矿渣陶砂砂浆抗压强度(介于20.9~65.0 MPa)为变量的空心砌块砌体轴心抗拉强度的计算公式。  相似文献   

2.
为考察碱激发矿渣陶粒混凝土空心砌块(alkali-activated slag ceramsite concrete hollow block,简称AASCHB)砌体的轴心受压性能,完成了由强度等级为MU7.5、MU10、MU15的AASCHB和强度等级为Mb20、Mb25、Mb30的碱激发矿渣陶砂砂浆(alkali-activated slag mortar with pottery sand,简称AASM)砌筑的36个砌块砌体试件的轴心受压试验.试验结果表明:AASCHB砌体的抗压强度随AASCHB抗压强度的增大而增大;而AASM抗压强度对砌体抗压强度的影响相对复杂.用AASCHB和AASM砌筑的砌块砌体轴心抗压强度试验值普遍低于按GB 50003—2011《砌体结构设计规范》砌体轴心抗压强度计算公式的预估值.在《砌体结构设计规范》砌体轴心抗压强度计算公式的基础上,通过引入AASM特性系数,调整砂浆强度影响修正系数,建立了以AASCHB抗压强度和AASM抗压强度为关键参数的这类新型砌块砌体的轴心抗压强度计算公式.  相似文献   

3.
为研究碱激发矿渣陶粒混凝土空心砌块(alkali-activated slag ceramsite concrete hollow block,简称AASCHB)砌体的弯曲受拉性能,完成了108个用Mb25~Mb90碱激发矿渣陶砂砂浆(alkali-activated slag mortar with pottery sand,简称AASM)砌筑的AASCHB砌体的弯曲受拉性能试验.试验结果表明:GB 50003—2011表B.0.1-2中所给公式不能准确预估AASM砌筑的AASCHB砌体的弯曲抗拉强度,砂浆强度低于70.3 MPa时,沿通缝截面弯曲抗拉强度预估值偏高,砂浆强度介于70.3~91.9 MPa时,沿通缝截面弯曲抗拉强度预估值偏低;当砂浆强度低于46.2 MPa时,沿齿缝截面弯曲抗拉强度预估值偏高,砂浆强度介于46.2~91.9 MPa时,沿齿缝截面弯曲抗拉强度预估值偏低.同时发现AASCHB砌体弯曲抗拉强度不但与AASM的抗压强度有关,而且受水灰比、砂灰比、Na_2O含量和水玻璃模数的影响.基于试验结果,分别建立了AASCHB砌体沿通缝截面和沿齿缝截面弯曲抗拉强度的计算公式.  相似文献   

4.
研究无砂浆灌孔砌块砌体的基本力学性能,通过对3种灌孔混凝土强度的27个(抗压9个、抗剪18个)无砂浆灌孔砌块砌体进行静力加载试验,观察试件裂缝的发展、试件的破坏情况,并记录相应的荷载值.发现无砂浆灌孔砌块砌体的抗压性能和抗剪性能与普通混凝土空心砌块砌体的基本相似.与《砌体结构设计规范》(GB50003-2011)平均值公式计算值相比,无砂浆灌孔砌块砌体的抗压和抗剪强度分别提高了52%~78%和8%~14%.抗压试验的初裂荷载为破坏荷载的55%~60%,抗剪试验的初裂荷载约为破坏荷载的80%.试验结果与建议的理论公式的计算值较为接近.  相似文献   

5.
目的研究采用不同方式砌筑的A类蒸压加气混凝土砌块砌体轴压试件和通缝抗剪试件的基本力学性能,为工程设计提供科学依据.方法对A类蒸压加气混凝土砌块砌体的24个轴压试件和36个通缝抗剪试件进行试验并对结果进行分析.结果A类蒸压加气混凝土砌体对砌块的抗压强度利用率较高,轴心受压砌体的抗压强度为砌块抗压强度的70%左右.结论在灰缝中配钢筋和纤维能显著地提高抗压砌体的开裂强度,延缓抗压砌体开裂,提高其延性.专用砂浆提高了砂浆与砌块的协调工作能力.砌体的轴心抗压强度与Mu10黏土砖、M5混合砂浆砌筑的砌体强度相当.  相似文献   

6.
通过对再生混凝土砌块砌体的抗压强度和抗剪强度试验,探讨了砌体的破坏过程和破坏形态,并根据试验结果分析了再生混凝土砌块砌体强度与砌块强度和砂浆强度的关系。基于试验数据计算了再生混凝土砌块砌体的强度标准值和设计值。研究结果表明:再生混凝土砌块砌体与普通混凝土砌块砌体的力学性能基本一致,且具有较好的抗压稳定性;普通混凝土砌块砌体的抗压强度和抗剪强度计算公式适用于再生混凝土砌块砌体。  相似文献   

7.
为研究碱激发矿渣陶粒混凝土砌块高温后力学性能,完成了MU10和MU20两个强度等级常温下及历经400、600、700、800、900、1 000、1 100℃高温后各24个碱激发矿渣陶粒混凝土砌块抗压试验.发现MU10和MU20砌块高温后抗压强度在20~1 100℃间随历经温度的升高而线性降低.基于试验结果,建立了高温后碱激发矿渣陶粒混凝土砌块抗压强度随历经温度而变化的计算公式.  相似文献   

8.
针对现行《建筑抗震设计规范》(GB 50011-2010)和《砌体结构设计规范》(GB 50003-2001)中关于混凝土空心砌块砌体抗震抗剪设计强度取值上存在的问题,在砌体剪压破坏区理论的基础上,结合中国已有58片混凝土砌块砌体墙的剪压试验结果,提出了具有下降段的剪压复合作用下混凝土空心砌块砌体抗震抗剪强度平均值曲线公式,并推导出具有可靠度保证的混凝土砌块砌体抗震抗剪强度设计值公式。与现行规范相比,提出的抗震抗剪强度设计值公式不仅解决了现行规范间的不统一,而且较好的实现了剪压复合作用下混凝土空心砌块砌体剪摩、剪压和斜压3类破坏形态的模拟,避免了现行规范中混凝土砌块砌体抗震抗剪设计强度取值的不合理和不安全,可运用于高层配筋砌块砌体结构设计。  相似文献   

9.
目的 研究矿渣混凝土实心砖砌体沿通缝截面的抗剪强度计算指标.方法 参照<砌体基本土学性能试验方法>(GBJ129)的要求,采用9块砖组成的双剪试件,对48个矿渣混凝土 .实心砖砌体试件进行了沿通缝截面的抗剪试验.结果 矿渣混凝土实心砖砌体抗剪强度的计算指标超过烧结普通砖砌体抗剪强度的30%~50%,将试验结果进行回归分析,给出了矿渣混凝土实心砖砌体抗剪强度平均值的计算公式.结论 矿渣混凝土实心砖砌体抗剪性能良好.其砌体抗剪强度计算指标可按<砌体结构设计规范>(GB 50003)中烧结普通砖砌体抗剪强度计算指标取值.  相似文献   

10.
选择自制的MU5和MU15可发性聚苯乙烯(简称EPS)轻质、节能混凝土砌块与多种级别的专用砂浆、普通砂浆配合,制作纯剪构件,开展EPS砌块砌体受剪破坏试验,观测砌体受力过程和变形特点,以此分析EPS混凝土砌块砌体受剪性能,并通过分析整理实验数据,提出EPS轻质节能混凝土砌块砌体的抗剪强度计算公式.为该新材料的推广使用提供可靠的理论和实验指导.  相似文献   

11.
碱矿渣陶粒混凝土基本性能试验研究   总被引:3,自引:0,他引:3  
为了解决碱矿渣胶凝材料收缩过大限制其应用的问题,将陶粒和陶砂掺入碱矿渣胶凝材料中形成碱矿渣陶粒混凝土.完成了252个碱矿渣陶粒混凝土试件的试验,考虑了水灰比、砂率、粉煤灰质量分数、水玻璃模数、氧化钠质量分数等关键参数对碱矿渣陶粒混凝土抗压强度和干缩率的影响.试验结果表明,碱矿渣陶粒混凝土的28d边长为100 mm立方体的抗压强度为45~55 MPa,碱矿渣陶粒混凝土的28 d干燥收缩率为1.8×10~(-4)~4.4×10~(-4).当水灰比、粉煤灰质量分数、水玻璃模数、氧化钠质量分数增大时,抗压强度减小,干缩率增大;砂率增大时,抗压强度增大,干缩率减小.  相似文献   

12.
生土基砌体沿通缝抗剪试验方法研究   总被引:1,自引:0,他引:1  
为确定一种适用于生土基砌体沿通缝抗剪试验方法,本文通过对48个不同种类生土基砌体进行双剪试验,分析了块材种类、水平灰缝、荷载作用位置、灰缝材料等因素对生土基砌体沿通缝抗剪性能的影响,基于层次分析法对不同抗剪试验方法进行综合评价,确定了一种适用于生土基砌体沿通缝抗剪的试验方法。结果表明:抗剪试验方法对生土基砌体沿通缝抗剪性能存在显著影响,含有水平灰缝的试件抗剪强度一般高于不含水平灰缝的3砖试件抗剪强度;荷载作用位置对于6砖试件的抗剪强度存在一定影响,半砖受荷试件的抗剪强度大多数情况下高于整砖受荷试件的抗剪强度;专用砂浆与块材的粘结性能较好,砂浆试件的抗剪强度约为泥浆试件的10~65倍;4砖试件在试验操作性和试件受力状态方面均表现出显著优势,层次分析法的综合评价值最高,为0.32,建议采用4砖抗剪试验方法作为生土基砌体沿通缝抗剪的标准试验方法。  相似文献   

13.
Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry,i.e.the rebound method,pulling-out method and core drilling method were employed to test the strength of block,mortar and grouted concrete,respectively.The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed,and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods.The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out.Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry.Moreover,the formulas of compressive strength,detection methods and proposals are given as well.  相似文献   

14.
复合混凝土空心砌块具有保温、隔热、承重、节能、施工方便等诸多优点,是节能建筑的新型墙体材料之一。基于复合混凝土空心砌块砌体受压及受剪的试验结果,对该砌块砌体受压和受剪承载力进行了理论计算和分析比较,为复合混凝土空心砌块砌体的应用提供参考。  相似文献   

15.
The hydration properties of cement-GGBS-fly ash blended binder and cement-GGBS-steel slag blended binder were compared. The experimental results show that the hydration rate of cement-GGBS- steel slag blended binder is higher than that of cement-GGBS-fly ash blended binder within 28 days, but lower than the latter after 28 days. The hydration of cement-GGBS-steel slag blended binder tends to produce more Ca(OH)2 than the hydration of cement-GGBS-fly ash blended binder, especially at late ages. Cement-GGBS- steel slag mortar exhibits higher strength than cement-GGBS-fly ash mortar within 28 days, but at late ages, it exhibits similar compressive strength with eement-GGBS-fly ash mortar and even slightly lower bending strength than cement-GGBS-fly ash mortar. Cement-GGBS-steel slag paste has finer early pore structure but coarser late pore structure than cement-GGBS-fly ash paste. Cement-GGBS-steel slag paste can get satisfied late pore structure and cement-GGBS-steel slag mortar can get satisfied late strength as compared with pure cement paste and pure cement mortar, respectively.  相似文献   

16.
The results of an experimental study on investigating the properties of cementitious rendering mortars prepared with a recycled fine aggregate (RA) were presented. The RA was obtained from a recycling plant in which mixed demolition wastes were processed by mechanical crushing, sieving and sorting operations. Two series of rendering mortar mixes were prepared with a constant water/cement and a constant aggregate/cement ratios of 0.55 and 3 respectively. River sand and natural crushed rock fine were originally used in the two series separately, and they were consistently replaced by 25%, 50%, 75% and 100% by the recycled aggregate. The experimental results showed that mechanical properties, such as compressive strength, flexural strength and modulus of elasticity of the mortars prepared with the RA were lower than the mortars made with the natural aggregates. Nevertheless, the bond strength at the interface between the mortar and masonry bricks determined by the Triplet test was found to be higher for the mortars prepared with the RA.  相似文献   

17.
The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号