首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Essential genes were identified in the 1.5-map unit dpy-5 unc-13 region of chromosome I in the Caenorhabditis elegans genome by rescuing lethal mutations using the duplication sDp2. In this paper, we report the mapping and complementation testing of lethal mutations, 45 of which identify 18 new, essential genes. This analysis brings the number of essential genes defined by the sDp2 rescue of lethal mutants to 97; 64 of these map between dpy-5 and unc-13. 61% of these essential genes are identified by more than one allele. Positioning of the mutations was done using the breakpoints of six duplications. The mutant phenotypes of 14 loci essential for fertility were characterized by Nomarski microscopy and DAPI staining. None of the mutants were rescued by wild-type male sperm. The cytological data showed that four genes produced mutants with defects in gonadogenesis, let-395, let-603, let-605 and let-610. Mutations in seven genes, let-355, let-367, let-384, let-513, let-544, let-545 and let-606, affected germ cell proliferation or gametogenesis. Mutants for the remaining three genes, let-370, let-599 and let-604, produced eggs that failed to develop or hatch, thereby acting as maternal effect lethals. We observed a nonrandom distribution of arrest phenotypes with regard to map position.  相似文献   

2.
Lethal mutations in the 0.5 map unit region between dpy-5 and bli-4 on chromosome I in Caenorhabditis elegans were serially rescued using cosmid-containing transgenic strains. All the lethal mutations analyzed came from a set of 495 EMS-induced, sDp2-rescued lethals described previously. Germline transformation with cosmid DNA was used to create 25 transgenic strains bearing heritable extrachromosomal arrays. These arrays were used as small duplications for the fine-scale mapping of essential genes, via the rescue of lethal mutations. Lethal mutations in 13 essential genes have been phenotypically rescued, allowing the alignment of the genetic and physical maps in this region. Extrachromosomal arrays were found to be transmitted 2- to 7-fold less frequently in oocytes than in hermaphrodite sperm for 12 of the 16 arrays that were examined. Three of these strains showed a subsequent 4- to 13-fold increase in array stability in oocytes. This phenomenon may be influenced by cosmid sequences. Early mitotic loss of the arrays was observed in all 17 transgenic strains examined, suggesting that loss of the array can occur at any time during development when cell divisions are occurring. As a result of this work, 13 of the essential loci positioned between dpy-5 and bli-4 are anchored to the physical map, thereby providing links between the physical and genetic maps on average every 85 kb. Received: 8 May 1996 / Accepted: 27 January 1997  相似文献   

3.
Summary Essential genes have been identified in the 1.5 map unit (m.u.)dpy-14-unc-29 region of chromosome I inCaenorhabditis elegans. Previous work defined nine genes with visible mutant phenotypes and nine genes with lethal mutant phenotypes. In this study, we have identified an additional 28 essential genes with 97 lethal mutations. The mutations were mapped using eleven duplication breakpoints, eight deficiencies and three-factor recombination experiments. Genes required for the early stages of development were common, with 24 of the 37 essential genes having mutant phenotypes arresting at an early larval stage. Most mutants of a gene have the same time of arrest; only four of the 20 essential genes with multiple alleles have alleles with different phenotypes. From the analysis of complementing alleles oflet-389, alleles with the same time-of-arrest phenotype were classified as either hypomorphic or amorphic. Mutants oflet-605, let-534 andunc-37 have both uncoordinated and lethal phenotypes, suggesting that these genes are required for the coordination of movement and for viability. The physical and genetic maps in thedpy-14 region were linked by positioning two N2/BO polymorphisms with respect to duplications in the region, and by localizing the right breakpoint of the deficiencyhDf8 on the physical map. Using cross-species hybridization toC. briggsae, ten regions of homology have been identified, eight of which are known to be coding regions, based on Northern analysis and/or the isolation of cDNA clones.  相似文献   

4.
We have analyzed a region of approximately 5.4 million base pairs for mutations, which under standard laboratory conditions result in developmental arrest, sterility, or maternal-effect lethality in Caenorhabditis elegans. Lethal mutations were isolated, maintained, and genetically manipulated as homozygotes using sDp2– a duplication of the left half of chromosome I. All of the lethals and rearrangements used in this analysis were balanced by sDp2. Relatively low doses of mutagen, (approximately 15 mM ethylmethane sulfate; EMS), were used so as to limit the occurrence of second-site mutations, thus increasing the probability of recovering single nucleotide substitutions. Treatment of over 32,400 marked chromosomes resulted in 486 analyzed mutations. In this paper, we add 133 previously unidentified let genes, isolated in the EMS screens, and one let gene identified by a γ-ray induced mutation, to our collection of 103 essential genes. We also recovered lethal alleles of genes for which visible mutants already existed. In total, eight deficiencies and alleles of 237 essential genes were identified. Eighty-nine of the previously unidentified let genes are represented by more than one lethal allele. Statistical analysis indicates a minimum estimate of 400 essential genes in the region of chromosome I balanced by sDp2. This region occupies approximately half of chromosome I, and contains over 1135 protein-coding genes predicted from the genomic sequence data. Thus, approximately one-third of the predicted genes are estimated to be essential. Of these approximately 60% are represented by lethal alleles. Less than 2% of the lethal-bearing strains recovered in our analysis, including the eight genetically definable deficiencies, carried more than one lethal mutation. Several screens were used to recover mutations for this analysis. Because all the mutations were isolated using the same balancer, under similar screening conditions, it was possible to compare intervals within the sDp2 region with each other. The fraction of essential genes that present relatively large targets for EMS was highest within the central cluster (dpy-5 to unc-13). Received: 12 July 1999 / Accepted: 6 December 1999  相似文献   

5.
Five formaldehyde-induced deficiencies that uncover unc-22 IV, a gene affecting muscle structure in the nematode Caenorhabditis elegans were isolated and positioned. The largest deficiency, sDf2, extends in both directions from unc-22 and is approximately 1.0–2.0 map units in length. The other four deficiencies, sDf7, sDf8, sDf9 and sDf10, are all smaller than sDf2 and are located within the region uncovered by this deficiency. Thirty-seven ethyl methanesulfonate-induced lethal and sterile mutations linked to unc-22 were isolated and tested for complementation with sDf2. Nineteen lethal mutations failed to complement sDf2. Sixteen of these were further positioned by recombination mapping and also by deficiency mapping with sDf7, sDf8, sDf9 and sDf10. These sixteen mutations define 11 new essential genes in this region. Eight of the genes lie in a 0.9-map unit interval to the left of unc-22, whereas the three remaining genes lie in a region of about 0.2 map units to the right of unc-22. We believe that two of the essential genes identified in this study, let-56 and let-52, are the adjacent genes on either side of unc-22. The lethal mutations exhibit a wide range of terminal phenotypes: from first stage larva to sterile adult.  相似文献   

6.
Summary The subject of this study is the organization of essential genes in the 2 map-unit unc-22 IV region of the Caenorhabditis elegans genome. With the goal of achieving mutational saturation of essential genes in this region, 6491 chromosomes mutagenized with ethyl methanesulfonate (EMS) were screened for the presence of lethal mutations in the unc-22 region. The genetic analysis of 21 lethal mutations in the unc-22 region resulted in the identification of 6 new essential genes, making a total of 36 characterized to date. A minimum of 49 essential genes are estimated to lie in this region. A set of seven formaldehyde-induced deficiencies of unc-22 and surrounding loci were isolated to facilitate the positioning of essential genes on the genetic and physical maps. In order to study essential genes at the molecular level, our approach was to rescue lethal mutations by the injection of genomic DNA in the form of cosmid clones into the germ-line of balanced heterozygotes carrying a lethal mutation. The cosmid clones containing let-56 and let-653 were identified by this method.  相似文献   

7.
Two genes of Aspergillus nidulans are known to function in UV mutagenesis, but have been assigned to different epistasis groups: uvsC, which is also required for meiosis and mitotic recombination, and uvsI, which may have no other function. To clarify their role in error-prone repair and to investigate their interaction, uvsI and uvsC single and uvsI;uvsC double mutant strains were further tested for mutagen sensitivities and characterized for effects on mutation. Spontaneous and induced frequencies were compared in forward and reverse mutation assays. All results confirmed that uvsI and uvsC are members of different epistasis groups, and demonstrated that these uvs mutants have very different defects in UV mutagenesis. The uvsI strains showed wild-type frequencies in all forward mutation tests, but greatly reduced spontaneous and UV-induced reversion of some, but not other, point mutations. In contrast, uvsC had similar effects in all assay systems: namely pronounced mutator effects and greatly reduced UV mutagenesis. Interestingly, the uvsI;uvsC double mutant strains differed from both single mutants; they clearly showed synergism for all types of reversion tested: none were ever obtained spontaneously, nor after induction by UV or EMS (ethylmethane sulfonate). Based on these results, we conclude that uvsI is active in a mutation-specific, specialized error-prone repair process in Aspergillus. In contrast, uvsC, which is now known to show sequence homology to recA, has a basic function in mutagenic UV repair in addition to recombinational repair, similar to recA of Escherichia coli. Received: 23 September 1996 / Accepted: 2 December 1996  相似文献   

8.
The gene cluster (ery) governing the biosynthesis of the macrolide antibiotic erythromycin A by Saccharopolyspora erythraea contains, in addition to the eryA genes encoding the polyketide synthase, two regions containing genes for later steps in the pathway. The region 5′ of eryA that lies between the known genes ermE (encoding the erythromycin resistance methyltransferase) and eryBIII (encoding a putative S-adenosylmethionine-dependent methyltransferase), and that contains the gene eryBI (orf2), has now been sequenced. The inferred product of the eryBI gene shows striking sequence similarity to authentic β-glucosidases. Specific mutants were created in eryBI, and the resulting strains were found to synthesise erythromycin A, showing that this gene, despite its position in the biosynthetic gene cluster, is not essential for erythromycin biosynthesis. A␣mutant in eryBIII and a double mutant in eryBI and eryBIII were obtained and the analysis of novel erythromycins produced by these strains confirmed the proposed function of EryBIII as a C-methyltransferase. Also, a chromosomal mutant was constructed for the previously sequenced ORF19 and shown to accumulate erythronolide B, as expected for an eryB mutant and consistent with its proposed role as an epimerase in dTDP-mycarose biosynthesis. Received: 13 August 1997 / Accepted: 27 November 1997  相似文献   

9.
Nonsense mutant mRNAs are unstable in all eucaryotes tested, a phenomenon termed nonsense-mediated mRNA decay (NMD) or mRNA surveillance. Functions of the seven smg genes are required for mRNA surveillance in Caenorhabditis elegans. In Smg(+) genetic backgrounds, nonsense-mutant mRNAs are unstable, while in Smg(−) backgrounds such mRNAs are stable. Previous work has demonstrated that the elevated level of nonsense-mutant mRNAs in Smg(−) animals can influence the phenotypic effects of heterozygous nonsense mutations. Certain nonsense alleles of a muscle myosin heavy chain gene are recessive in Smg(+) backgrounds but strongly dominant in Smg(−) backgrounds. Such alleles probably express disruptive myosin polypeptide fragments whose abundance is elevated in smg mutants due to elevation of mRNA levels. We report here that mutations in a variety of C. elegans genes are strongly dominant in Smg(−), but recessive or only weakly dominant in Smg(+) backgrounds. We isolated 32 dominant visible mutations in a Smg(−) genetic background and tested whether their dominance requires a functional NMD system. The dominance of 21 of these mutations is influenced by NMD. We demonstrate, furthermore, that in the case of myosin, the dominant-negative effects of nonsense alleles are likely to be due to expression of N-terminal nonsense-fragment polypeptides, not to mistranslation of the nonsense codons. mRNA surveillance, therefore, may mitigate potentially deleterious effects of many heterozygous germline and somatic nonsense or frameshift mutations. We also provide evidence that smg-6, a gene previously identified as being required for NMD, performs essential function(s) in addition to its role in NMD. Received: 10 June 1998 / Accepted: 21 July 1998  相似文献   

10.
Genetic Organization of the Unc-60 Region in Caenorhabditis Elegans   总被引:2,自引:1,他引:1  
We have investigated the chromosomal region around unc-60 V, a gene affecting muscle structure, in the nematode Caenorhabditis elegans. The region studied covers 3 map units and lies at the left end of linkage group (LG) V. Compared to the region around dpy-11 (at the center of LGV), the unc-60 region has relatively few visible genes per map unit. We found the same to be true for essential genes. By screening simultaneously for recessive lethals closely linked to either dpy-11 or unc-60, we recovered ethyl methanesulfonate-induced mutations in 10 essential genes near dpy-11 but in only two genes near unc-60. Four deficiency breakpoints were mapped to the unc-60 region. Using recombination and deficiency mapping we established the following gene order: let-336, unc-34, let-326, unc-60, emb-29, let-426. Regarding unc-60 itself, we compared the effect of ten alleles (including five isolated during this study) on hermaphrodite mobility and fecundity. We used intragenic mapping to position eight of these alleles. The results show that these alleles are not distributed uniformly within the gene, but map to two groups approximately 0.012 map unit apart.  相似文献   

11.
12.
A Rhizobium etli Tn5mob-induced mutant (CFN035) exhibits an enhanced capacity to oxidize N,N,N′,N′, tetramethyl-p -phenylenediamine (TMPD), a presumptive indicator of elevated cytochrome c terminal oxidase activity. Sequencing of the mutated gene in CFN035 revealed that it codes for the amidophosphoribosyl transferase enzyme (PurF) that catalyzes the first step in the purine biosynthetic pathway. Two c-type cytochromes with molecular weights of 32 and 27 kDa were produced in strain CFN035, which also produced a novel CO-reactive cytochrome (absorbance trough at 553 nm), in contrast to strain CE3 which produced a single 32 kDa c-type protein and did not produce the 553 nm CO-reactive cytochrome. A wild-type R. etli strain that expresses the Bradyrhizobium japonicum fixNOQP genes, which code for the symbiotic cytochrome terminal oxidase cbb 3, produced similar absorbance spectra (a trough at 553 nm in CO-difference spectra) and two c -type proteins similar in size to those of strain CFN035, suggesting that CFN035 also produces the cbb 3 terminal oxidase. The expression of a R. etli fixN-lacZ gene fusion was measured in several R. etli mutants affected in different steps of the purine biosynthetic pathway. Our analysis showed that purF, purD, purQ, purL, purY, purK and purE mutants expressed three-fold higher levels of the fixNOQP operon than the wild-type strain. The derepressed expression of fixN was not observed in a purH mutant. The purH gene product catalyzes the conversion of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) and inosine. Supplementation with AICA riboside lowered the levels of fixN expression in the purF mutants. These data are consistent with the possibility that AICAR, or a closely related metabolite, is a negative effector of the production of the symbiotic terminal oxidase cbb 3 in R. etli. Received: 21 November 1996 / Accepted: 22 January 1997  相似文献   

13.
We are developing budding yeast, Saccharomyces cerevisiae, as a genetic system for the study of tolerance to the trivalent aluminum cation (Al3+). We have isolated eight mutants that are more sensitive to Al3+ than the wild type. Each mutant represented a different complementation group. A number of the mutants were pleiotropic, and showed defects in other stress responses, changes in tolerance to other metal cations, or abnormal morphology. Two mutants also showed increased dependence on supplemental Mg2+ and Ca2+. One mutant with a relatively specific sensitivity to Al3+ was chosen for molecular complementation. Normal Al3+ tolerance was restored by expression of the MAP kinase gene SLT2. Strains carrying deletions of the SLT2 gene, or of the gene for the corresponding MAP kinase–kinase SLK1, showed sensitivity to Al3+. These results indicate that the SLT2 MAP kinase signal transduction pathway is required for yeast to sense and respond to Al3+ stress. Received: 17 April 1996 / Accepted: 21 October 1996  相似文献   

14.
15.
In the phytopathogenic basidiomycete Ustilago maydis mating and dikaryon formation are controlled by a pheromone/receptor system and the multiallelic b locus. Recently, a gene encoding a G protein α subunit, gpa3, was isolated and has subsequently been implicated in pheromone signal transduction. Mutants deleted for gpa3 are sterile and nonpathogenic, and exhibit a morphology that is similar to that of mutants with defects in the adenylate cyclase gene uac1. We have found that the sterility and mutant morphology of gpa3 deletion strains can be rescued by exogenous cAMP. In these mutants and in the corresponding wild-type strains, exogenous cAMP stimulates pheromone gene expression to a level comparable to that seen in the pheromone-stimulated state. In addition, we demonstrate that uac1 is epistatic to gpa3. We conclude that Gpa3 controls the cAMP signalling pathway in U.maydis and discuss how this pathway feeds into the pheromone response. Received: 4 May 1998 / Accepted: 24 July 1998  相似文献   

16.
Summary In this paper we describe the meiotic pairing behavior of two free duplications in Caenorhabditis elegans. sDp1 is a duplication of approximately 30 map units of the right portion of linkage group I including unc-74 to unc-54. This duplication pairs, recombines, and apparently segregates from one of the normal homologues. A second duplication, sDp2, is a duplication of approximately 15 map units of the left portion of the linkage group. sDp2 was not observed to recombine with the normal homologue but did suppress exchange between the two normal homologues in a sDp2/ ++ / dpy-5 unc-35 heterozygote. Although a number of free duplications have been described previously in Caenorhabditis elegans, none of these have been shown to pair with normal homologues. The meiotic behavior of the duplications described in this paper can be understood assuming the existence in C. elegans chromosomes of pairing sites of the type described in D. melanogaster chromosomes (I. Sandler 1956; Hawley 1980).  相似文献   

17.
Lethal mutations in the 0.5 map unit region between dpy-5 and bli-4 on chromosome I in Caenorhabditis elegans were serially rescued using cosmid-containing transgenic strains. All the lethal mutations analyzed came from a set of 495 EMS-induced, sDp2-rescued lethals described previously. Germline transformation with cosmid DNA was used to create 25 transgenic strains bearing heritable extrachromosomal arrays. These arrays were used as small duplications for the fine-scale mapping of essential genes, via the rescue of lethal mutations. Lethal mutations in 13 essential genes have been phenotypically rescued, allowing the alignment of the genetic and physical maps in this region. Extrachromosomal arrays were found to be transmitted 2- to 7-fold less frequently in oocytes than in hermaphrodite sperm for 12 of the 16 arrays that were examined. Three of these strains showed a subsequent 4- to 13-fold increase in array stability in oocytes. This phenomenon may be influenced by cosmid sequences. Early mitotic loss of the arrays was observed in all 17 transgenic strains examined, suggesting that loss of the array can occur at any time during development when cell divisions are occurring. As a result of this work, 13 of the essential loci positioned between dpy-5 and bli-4 are anchored to the physical map, thereby providing links between the physical and genetic maps on average every 85 kb.  相似文献   

18.
Summary A previous study of genomic organization described the identification of nine potential coding regions in 150 kb of genomic DNA from the unc-22(IV) region of Caenorhabditis elegans. In this study, we focus on the genomic organization of a small interval of 0.1 map unit bordered on the right by unc-22 and on the left by the left-hand breakpoints of the deficiencies sDf9, sDf19 and sDf65. This small interval at present contains a single mutagenically defined locus, the essential gene let-56. The cosmid C11F2 has previously been used to rescue let-56. Therefore, at least some of C11F2 must reside in the interval. In this paper, we report the characterization of two coding elements that reside on C11F2. Analysis of nucleotide sequence data obtained from cDNAs and cosmid subclones revealed that one of the coding elements closely resembles aromatic amino acid decarboxylases from several species. The other of these coding elements was found to closely resemble a human growth factor activatable Na+/H+ antiporter. Pairs of oligonucleotide primers, predicted from both coding elements, have been used in PCR experiments to position these coding elements between the left breakpoint of sDf19 and the left breakpoint of sDf65, between the essential genes let-653 and let-56.  相似文献   

19.
In order to study the role of signal transduction pathways in the regulation of morphology in Neurospora crassa, we cloned and characterized a ras homologue, termed NC-ras2. The predicted protein product of this gene is composed of 229 amino acid residues and contains all the consensus sequences shared by the ras protein family. The gene is located in linkage group V. An NC-ras2 disruptant showed morphological characteristics very similar to those of the smco7 mutant, which also maps to linkage group V. Nucleotide sequence analysis revealed that the smco7 mutant harbored a single base deletion in the NC-ras2 gene, which is predicted to result in the truncation of the protein product. Introduction into the smco7 mutant of an NC-ras2 clone yielded stable transformants with a wild-type phenotype. The smco7 mutant exhibited very slow hyphal growth and the rate of conidial formation was approximately one two-hundredth of wild type. The smco7 mutation causes both the changes in the pattern of hyphal growth and the defects in cell wall synthesis. Both the diameter and the length of the apical compartment were shorter in the hyphae of the smco7 mutant. These results suggest that NC-ras2 is identical to smco7, and that the signal transduction pathway mediated by the NC-ras2 protein regulates the apical growth of hyphae, cell wall synthesis, and conidial formation in N. crassa. Received: 1 October 1996 / Accepted: 9 December 1996  相似文献   

20.
We have characterized the only mutation detected so far in S-Pcf, the mitochondrial cytoplasmic male sterility (CMS)-specific locus of petunia. This locus consists of three open reading frames (ORFs): the first contains part of atp9, an intron-less cox2 pseudogene (which does not contain the original cox2 ATG) and the unidentified reading frame urf-s; the second and third ORFs correspond to the only copies of nad3 and rps12 genes in the genome, respectively. In the cell line R13-138, which was generated from a male-sterile somatic hybrid (line SH13-138), a change in the first ORF of the S-Pcf locus has been characterized: the atp9 sequence has been lost, while exon1 of the normal copy of the cox2 gene (including the original ATG sequence) and the adjacent 5′ sequence of the petunia recombination repeat, have been introduced. The data suggest that this reorganization of mtDNA is the consequence of a homologous recombination event involving part of the cox2 coding region, and that the cox2 coding region may serve as an active site for inter- or intra-mtDNA homologous recombination. The results further suggest that in line SH13-138 (or during its maintenance in tissue culture), segregation of the S-Pcf-containing mtDNA molecules has occurred, and the mutant mtDNA is now predominant in the population. Received: 9 September 1996 / Accepted: 27 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号