首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 133 毫秒
1.
基于天山托木尔峰青冰滩72号冰川2008年高精度差分GPS测量资料,2009年末端重复测量数据以及1964年地形图,通过对比研究近45 a来该冰川的变化特征,结果表明:1964~2009年,青冰滩72号冰川末端退缩1 852 m,年均后退41 m,由此造成面积减少约为1.53 km2,年均减少0.03 km2;1964~2008年,冰舌平均减薄9.59±6 m,年均减薄约0.22±0.14 m,冰储量亏损达14.1±8.8×10-3 km3(12.7±7.9×10-3 km3 w.e.)。与天山其它区域典型监测冰川相比,青冰滩72号冰川消融强烈,是区域气候、末端海拔、冰川类型、表碛覆盖等因素综合影响的结果。  相似文献   

2.
基于GIS技术,利用GPS测量数据和1962年地形图分别建立两期DEM,通过对比重点研究了四工河4号冰川1962-2009年冰舌区的表面高程变化特征。结果表明:1962-2009年间,冰舌区平均减薄15±10 m,年均减薄约0.32±0.2 m,冰储量亏损达(14.3±9.5)×10-3km3,折合水当量(12.9±8.6)×10-3km3。不同海拔、坡度区间冰面高程变化差异显著,海拔较低、坡度较缓区域的变化最为强烈。在气候变暖的趋势下,四工河4号冰川发生强烈消融,标志着博格达峰地区的冰川正处于物质严重亏损的状态,直接影响到流域水资源状况。  相似文献   

3.
近50年新疆天山奎屯河流域冰川变化及其对水资源的影响   总被引:5,自引:0,他引:5  
张慧  李忠勤  牟建新  何海迪 《地理科学》2017,37(11):1771-1777
基于地形图、遥感影像、气象与水文资料,对气候变化背景下奎屯河流域近50 a冰川变化及其对水资源的影响进行了研究。结果表明:1964~2015年该流域冰川面积减小了约65.4 km2,冰储量亏损了约4.39 km3,且2000年后冰川消融与退缩加快。消融期内正积温增大带来的冰川物质支出(消融)高于源自年内降水的冰川物质收入(积累)是造成该流域冰川消融与退缩的主要原因。1964~2010年该流域径流年际变化总体呈上升趋势,1993年后径流增加趋势显著,且周期性丰枯变化发生了改变。52 a间该流域冰储量亏损引发的水资源损失量达39.5×108m3,年均亏损量约占多年平均径流量的12%,且20世纪80年代后冰川融水在径流中所占比重增大。  相似文献   

4.
喀喇昆仑山区冰川由于存在正物质平衡或跃动、前进现象,被称之为“喀喇昆仑异常”,不过该地区冰川变化差异显著,尤其是大型表碛覆盖冰川,呈现与其他类型冰川明显的差异性响应,为理解喀喇昆仑冰川异常的机理,冰川尺度的详细变化研究十分必要。音苏盖提冰川位于喀喇昆仑山乔戈里峰北坡,是中国面积最大的冰川,是典型的大型表碛覆盖冰川。通过应用TanDEM-X/TerraSAR-X(2014年2月)与SRTM-X DEM(2000年2月)的差分干涉测量方法计算音苏盖提冰川表面高程变化,并结合冰川表面流速对冰川表面高程变化和跃动进行分析和讨论。结果表明:2000—2014年音苏盖提冰川表面高程平均下降了1.68±0.94 m,即冰川整体厚度在减薄,年变化率为-0.12±0.07 m·a-1。冰川表面高程变化分布不均,其中南分支(S)冰流冰川整体减薄较为显著,冰川南分支冰流运动速度较快,前进/跃动的末端占据了冰川的主干,阻滞原主干冰川物质的向下运移(跃动),导致原主干冰舌表面高程上升;冰川厚度减薄随着海拔升高先下降后保持稳定,同时呈现一定的波动性;低海拔表碛区域消融大于裸冰区,可能存在较薄表碛,因热传导高、覆盖大量冰面湖塘和冰崖存在,加速了冰川消融;在坡度小于30 °的区域,冰川厚度减薄随着坡度的减小而加剧;坡向朝南冰川厚度略微增加(0.01 m),西南坡向冰川厚度略微减薄(-0.03 m),其他坡向冰川厚度减薄明显。近14 a来,表碛覆盖的音苏盖提冰川表面高程整体下降表明物质处于亏损状态,冰川跃动导致局部冰川表面高程的增加。  相似文献   

5.
念青唐古拉山作为青藏高原东南缘重要山古冰川分布区,受季风影响,各区域冰川变化特征差异明显。论文通过Landsat TM/ETM+/OLI资料、ASRTMGDEM与气象数据,采用比值—阈值法、目视解译和VOLTA模型,结合实地考察,对1990—2020年间念青唐古拉山中段北坡边坝地区现代冰川进退状况、面积变化、冰储量变化以及冰川变化对气候变化响应特征进行研究。结果表明:① 1990—2020年5条冰川(玉贡拉冰川、玛拉波冰川、祥格拉冰川、孔嘎冰川、贡日—庚东冰川)末端高程逐渐升高,面积和冰储量分别减少30.38 km2和4.64 km3,总体缩减并呈现加速趋势。② 冰川冰储量减少0.14~1.92 km3,总体变化率为0.40%·a-1。2020年上述5条冰川储量占1990年冰川储量的比例分别为0.70、0.99、0.98、0.91和0.82,显示出冰川规模越大,在短时间尺度的变化量越小。③ 气象数据分析显示,1990—2020年研究区冰川变化受气温升高主导,平均气温变化率为0.51 ℃。水热组合呈现温度升高—降水减少,且在最后10 a日益显著,预测未来冰川变化仍受气温控制并呈加速退缩趋势。④ 区域对比研究表明,念青唐古拉山冰川面积变化总体呈退缩状态,但各区域冰川变化特征差异明显。同时,不同研究方法对同一冰川区冰储量模拟结果相差较大,相对误差范围为34.45%~115.49%,精确的冰储量可对比研究方法仍有待进一步研究。  相似文献   

6.
天山1号冰川厚度和冰下地形探测与冰储量分析   总被引:12,自引:0,他引:12       下载免费PDF全文
通过对天山乌鲁木齐河源 1号冰川的雷达回波探测 ,清晰地揭示出冰川底部冰 /岩界面的位置及其起伏变化特征 ,显示出雷达波对山地冰川良好的穿透能力和对冰下地形的高分辨能力 ,冰川雷达测厚的误差小于 1 .2 %。研究结果显示 ,1号冰川东支冰川平均厚度为 5 8.77m ,西支冰川平均厚度为 44.84m ,冰体厚度最大值发育于冰川中部趋于主流线位置。冰川冰储量计算表明 ,东支冰储量为 0 .0 5 1 868km3,西支冰储量为 0 .0 2 0 2 1 0km3。表面和底部地形有明显差异 ,主要因冰川动力过程对基岩强烈的地貌作用所致 ,意味着冰床的起伏地形对冰川浅层冰体的运动过程影响不显著。  相似文献   

7.
天山奎屯河哈希勒根51号冰川变化监测结果分析   总被引:2,自引:1,他引:1  
哈希勒根51号冰川位于新疆奎屯市以南的天山依连哈比尔尕山北坡,即奎屯河上游支流哈希勒根河源区。1999年8月,在该冰川上布设了用于冰川变化观测研究的测杆18根;同时,在冰川外围测定了2个基本控制点和3个冰川末端变化观测控制点,运用GPS和全站仪等观测技术及测杆实测等方法,对该冰川进行了末端和运动速度变化的首次观测。嗣后,每年的8月底~9月初进行了重复观测;并在2000年和2006年对该冰川进行了测量制图。通过实测资料分析并对比20世纪60年代冰川状况,结果表明:42年来冰川末端累计退缩了84.51 m,其中,1964-1999年间退缩了49.00 m,年平均退缩量为1.40 m/a;1999-2006年间退缩了35.51 m,年平均退缩量5.07m/a。冰川面积减少了0.123 km~2或8.3%,其中,1964-2000年间减少了0.083 km~2;2000-2006年间减少了0.040 km~2。明显地反映出冰川末端退缩加剧和冰川面积减少增大的趋势。冰川年平均运动速度在1.53~3.05 m/a之间,并有逐年减小的趋势。  相似文献   

8.
1959年来中国天山冰川资源时空变化   总被引:1,自引:0,他引:1  
基于两期冰川编目数据与气象数据,对天山1959年来冰川资源的时空变化特征进行研究。研究发现:① 天山地区现有冰川7934条,面积7179.77 km2,冰储量756.48 km3。冰川数量以面积< 1 km2的冰川居多,面积以1~10 km2和≥ 20 km2的冰川为主,冰川集中分布在海拔3800~4800 m之间。② 在四级流域中,阿克苏河流域冰川面积最大为1721.75 km2,面积最小的是伊吾河流域,为56.03 km2。在各市(州)中,阿克苏地区冰川资源量最多,其面积和储量分别占天山总量的43.28%和68.85%;冰川资源量最少的市(州)是吐鲁番地区,面积和储量仅占天山总量的0.23%和0.07%。③ 1959年来,天山地区冰川面积减少了1619.82 km2(-18.41%),储量亏损了104.78 km3(-12.16%),其中数量以< 1 km2的冰川减少最多,面积减少以< 5 km2的冰川最为严重。④ 冰川变化呈现明显的区域差异,变化速度最快的是天山东段博格达北坡流域,变化最慢的是中部的渭干河流域。初步分析认为夏季气温显著上升带来的消融大于年内降水带来的积累是天山冰川退缩的主要原因。  相似文献   

9.
廖海军  刘巧  钟妍  鲁旭阳 《地理学报》2021,76(11):2647-2659
表碛覆盖型冰川是中国西部较为常见的冰川类型。表碛层存在于大气—冰川冰界面,强烈影响大气圈与冰冻圈之间的热交换。表碛厚度的空间异质性可极大地改变冰川的消融率和物质平衡过程,进而影响冰川径流过程和下游水资源。基于Landsat TM/TIRS数据,运用能量平衡方程反演了贡嘎山地区冰川表碛厚度,研究了贡嘎山地区冰川在1990—2019年间表碛覆盖范围及厚度变化情况,同时对比了东西坡差异。结果表明:① 贡嘎山地区冰川表碛扩张总面积达43.824 km2。其中,海螺沟冰川扩张2.606 km2、磨子沟冰川1.959 km2、燕子沟冰川1.243 km2、大贡巴冰川0.896 km2、小贡巴冰川0.509 km2、南门关沟冰川2.264 km2,年均扩张率分别为3.2%、11.1%、1.5%、0.9%、1.0%和6.5%;② 海螺沟冰川、磨子沟冰川、燕子沟冰川、大贡巴冰川、小贡巴冰川、南门关沟冰川表碛平均增厚分别为5.2 cm、3.1 cm、3.7 cm、6.8 cm、7.3 cm和13.1 cm;③ 西坡冰川表碛覆盖度高,表碛覆盖年均扩张率低,冰川末端退缩量小;东坡冰川表碛覆盖年均扩张率高,但表碛覆盖度总体低于西坡,冰川末端退缩量大。  相似文献   

10.
近20年天山地区冰湖变化特征   总被引:1,自引:1,他引:0  
主要基于Landsat TM/ETM+影像等数据,分析1990-2010 年来天山地区冰湖变化特征及其对冰川融水径流的影响。近20 年来,天山冰湖面积平均以0.689 km2a-1 或0.8% a-1的速度扩张,其中一半以上是由东天山(0.352 km2 a-1) 贡献的,其次为北天山,面积年均增率为0.165km2 a-1,西天山和中央天山的面积年均增率最小,分别为0.089 km2 a-1和0.083 km2 a-1。除在相对较低海拔(< 2900 m) 和高海拔(> 4100 m) 范围内冰湖面积出现减少的现象,其他各高度带的冰湖面积均在扩张,其中增率最快的在3500~3900 m之间,平均增速达1.6% a-1。冰湖扩张是本区气候变暖和冰川普遍退缩共同作用的结果,以中小规模的冰湖(< 0.6 km2) 对冰川退缩响应最为敏感。冰湖扩张能在一定程度上延缓因气候变暖而导致的区域冰川水资源的亏损,每年大约有0.006 Gt 的冰川融水滞留在冰湖中,约占天山冰川年消融量的2‰,但也将加剧本区冰湖溃决洪水/泥石流灾害的频次和强度。  相似文献   

11.
This study makes an attempt to investigate through statistical analysis the correlation between changes in ice volume and area of glaciers. Using data from nine sample glaciers in the Tian Shan, the results show that a linear relation exists between changes in ice volume and area, with a correlation coefficient of 0.700. However, the accuracy estimation is difficult due to the limited number of samples. The correlation was not improved after adding eleven glacier samples in other mountains. Two reference glaciers are then analyzed in more detail. The linear correlation coefficient is higher than 0.800 when using the observed changes in ice volume and area during different periods on Urumqi Glacier No. 1, which suggests that the linear relation is valid for one glacier for different periods if its shape does not change noticeably and also for other glaciers of the same shape during the same period. The relation between changes in ice volume and area of Qingbingtan Glacier No. 72 is different during different periods due to change in the shape of the glacier tongue and the influence of the debris cover. Moreover, errors in glacier-change monitoring and-volume estimation have an important influence on the correlation results. Therefore, further study needs to focus not only on the distinction between glacier types and between different periods but also on the accuracy of volume estimation.  相似文献   

12.
人类活动与天山现代冰川退缩   总被引:6,自引:1,他引:5  
在系统分析了中亚天山山两个长期进行物质平衡监测的乌鲁木齐河源1号冰川和图尤克苏冰川的资料,并引用其他研究成果后,发现中亚天山现代冰川1970年-1990年比1930年-1970年明显的退化。近20年多来,中亚天山冰川加速退缩,解体,与被工业排放污染了大气有关。  相似文献   

13.
High-precision measuring of glacier evolution remains a challenge as the available global and regional remote sensing techniques cannot satisfactorily capture the local-scale processes of most small- and medium-sized mountain glaciers. In this study, we use a high-precision local remote sensing technique, long-range terrestrial laser scanning (TLS), to measure the evolution of Urumqi Glacier No.1 at an annual scale. We found that the dense point clouds derived from the TLS survey can be used to reconstruct glacier surface terrain, with certain details, such as depressions, debris-covered areas, and supra-glacial drainages can be distinguished. The glacier experienced pronounced thickness thinning and continuous retreat over the last four mass-balance years (2015-2019). The mean surface slope of Urumqi Glacier No.1 gradually steepened, which may increase the removal of glacier mass. The glacier was deeply incised by two very prominent primary supra-glacial rivers, and those rivers presented a widening trend. Extensive networks of supra-glacial channels had a significant impact on accelerated glacier mass loss. High-precision measuring is of vital importance to understanding the annual evolution of this type of glacier.  相似文献   

14.
自1997年以来,乌鲁木齐河源1号冰川消融极为强烈,物质平衡呈大幅度亏损,连续12 a都处于强负平衡状态,平均物质平衡达-708 mm,且在2008年物质平衡达到历史最低值-999 mm,然而2009年出现了物质正平衡,物质平衡63 mm,年际变化量达1 062 mm。以2008-2009年物质平衡实测资料为基础,根据该地区的气温和降水资料分析,结果表明,造成这种现象的主要原因是夏季气温(5~8月)的降低,较2008年低1.8℃,致使冰川消融期的开始时间推迟至了7月份,结束时间提前到8月份,大大削弱了冰川的消融强度,其次是2005年以来逐渐增多的连续性降水,增加了冰川的积累量。  相似文献   

15.
近40年天山冰川变化的遥感监测   总被引:3,自引:0,他引:3  
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.  相似文献   

16.
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.  相似文献   

17.
高山冰川以其下垫面的致冷效应形成独特的冰川小气候.为研究冰川小气候特征,2007年7月在天山乌鲁木齐河源1号冰川表面及末端冰碛上架设5台自动气象站,并进行了为期一个月的基本气象要素的观测.以观测数据为基础,描述和分析了与冰川致冷效应有关的冰川区温度与湿度变化特征、冰面逆温、温跃现象、冰川风现象,并就冰川致冷效应对局地对...  相似文献   

18.
Worldwide examination of glacier change is based on detailed observations from only a small number of glaciers. The ground-based detailed individual glacier monitoring is of strong need and extremely important in both regional and global scales. A long-term integrated multi-level monitoring has been carried out on Urumqi Glacier No. 1 (UG1) at the headwaters of the Urumqi River in the eastern Tianshan Mountains of Central Asia since 1959 by the Tianshan Glaciological Station, Chinese Acamedey of Sciences (CAS), and the glaciological datasets promise to be the best in China. The boundaries of all glacier zones moved up, resulting in a shrunk accumulation area. The stratigraphy features of the snowpack on the glacier were found to be significantly altered by climate warming. Mass balances of UG1 show accelerated mass loss since 1960, which were attributed to three mechanisms. The glacier has been contracting at an accelerated rate since 1962, resulting in a total reduction of 0.37 km2 or 19.3% from 1962 to 2018. Glacier runoff measured at the UG1 hydrometeorological station demonstrates a significant increase from 1959 to 2018 with a large interannual fluctuation, which is inversely correlated with the glacier's mass balance. This study analyzes on the changes in glacier zones, mass balance, area and length, and streamflow in the nival glacial catchment over the past 60 years. It provides critical insight into the processes and mechanisms of glacier recession in response to climate change. The results are not only representative of those glaciers in the Tianshan mountains, but also for the continental-type throughout the world. The direct observation data form an essential basis for evaluating mountain glacier changes and the impact of glacier shrinkage on water resources in the interior drainage rivers within the vast arid and semi-arid land in northwestern China as well as Central Asia.  相似文献   

19.
The origin and mobilization of the extensive debris cover associated with the glaciers of the Nanga Parbat Himalaya is complex. In this paper we propose a mechanism by which glaciers can form rock glaciers through inefficiency of sediment transfer from glacier ice to meltwater. Inefficient transfer is caused by various processes that promote plentiful sediment supply and decrease sediment transfer potential. Most debris‐covered glaciers on Nanga Parbat with higher velocities of movement and/ or efficient debris transfer mechanisms do not form rock glaciers, perhaps because debris is mobilized quickly and removed from such glacier systems. Those whose ice movement activity is lower and those where inefficient sediment transfer mechanisms allow plentiful debris to accumulate, can form classic rock glaciers. We document here with maps, satellite images, and field observations the probable evolution of part of a slow and inefficient ice glacier into a rock glacier at the margins of Sachen Glacier in c. 50 years, as well as several other examples that formed in a longer period of time. Sachen Glacier receives all of its nourishment from ice and snow avalanches from surrounding areas of high relief, but has low ice velocities and no efficient system of debris removal. Consequently it has a pronounced digitate terminus with four lobes that have moved outward from the lateral moraines as rock glaciers with prounced transverse ridges and furrows and steep fronts at the angle of repose. Raikot Glacier has a velocity five times higher than Sachen Glacier and a thick cover of rock debris at its terminus that is efficienctly removed. During the advance stage of the glacier since 1994, ice cliffs were exposed at the terminus, and an outbreak flood swept away much debris from its margins and terminus. Like the Sachen Glacier that it resembles, Shaigiri Glacier receives all its nourishment from ice and snow avalanches and has an extensive debris cover with steep margins close to the angle of repose. It has a high velocity similar to Raikot Glacier and catastrophic breakout floods have removed debris from its terminus twice in the recent past. In addition, the Shaigiri terminus blocked the Rupal River during the Little Ice Age and is presently being undercut and steepened by the river. With higher velocities and more efficient sediment transfer systems, neither the Raikot nor the Shaigiri form classic rock‐glacier morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号