首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
Humanin (HN) is a recently identified endogenous peptide that protects cells against cytotoxicity induced by various stimuli. Recently, we showed that HN binds to and inhibits Bax, a proapoptotic Bcl-2 family protein, suggesting a mechanism for HN action. In this study, we identified Bim, a Bcl-2 homology 3-only member of the Bcl-2/Bax family, as an additional HN target protein. Using in vitro protein binding, immunoprecipitation, and coimmunolocalization assays, we demonstrated that HN binds directly to the extra long isoform of Bim (BimEL) but not the long (BimL) or short (BimS) isoforms. HN also protects cells against apoptosis induced by BimEL but not BimL and BimS in gene transfection studies. In contrast, mutants of HN which failed to bind BimEL failed to protect from BimEL-induced cell death. Moreover, HN inhibited BimEL-induced release of SMAC and cytochrome c from mitochondria isolated from bax-/-cells, indicating that HN can suppress BimEL independently of its effect on Bax. Finally, we demonstrate that HN prevents BimEL-induced oligomerization of Bak using isolated mitochondria. Taken together, our results indicate that the inhibition of BimEL may contribute to the antiapoptotic properties of the HN peptide.  相似文献   

2.
Bim is a BH3-only member of the Bcl-2 family that enables the death of T-cells. Partial rescue of cytokine-deprived T-cells occurs when Bim and the receptor for the T-cell growth factor, interleukin-7, are deleted, implicating Bim as a possible target of interleukin-7-mediated signaling. Alternative splicing yields three major isoforms: BimEL, BimL and BimS. To study the effect of Bim deficiency and define the function of the major isoforms, Bim-containing and Bim-deficient T-cells, dependent on interleukin-7 for growth, were used. Loss of total Bim in interleukin-7-deprived T-cells resulted in delayed apoptosis. However, loss of Bim also impeded the later degradative phase of autophagy. p62, an autophagy-adaptor protein which is normally degraded, accumulated in Bim deficient cells. To explain this, BimL was found to support acidification of lysosomes that later may associate with autophagic vesicles. Key findings showed that inhibition of lysosomal acidification accelerated death upon interleukin-7 withdrawal only in Bim-containing T-cells. intereukin-7 dependent T-cells lacking Bim were less sensitive to inhibition of lysosomal acidification. BimL co-immunoprecipitated with dynein and Lamp1-containing vesicles, indicating BimL could be an adaptor for dynein to facilitate loading of lysosomes. In Bim deficient T-cells, lysosome-tracking probes revealed vesicles of less acidic pH. Over-expression of BimL restored acidic vesicles in Bim deficient T-cells, while other isoforms, BimEL and BimS, promoted intrinsic cell death. These results reveal a novel role for BimL in lysosomal positioning that may be required for the formation of degradative autolysosomes.  相似文献   

3.
Glucocorticoid (GC)-induced apoptosis plays a major role in the treatment of acute lymphoblastic leukemia (ALL) and related malignancies. Members of the BCL2 family of pro- and anti-apoptotic proteins are regulated by GC, but to what extent these regulations contribute to GC-induced cell death and resistance development is poorly understood. Using primary lymphoblasts from ALL children during systemic GC monotherapy and related cell lines, we have previously shown that the response of the BCL2 rheostat to GC was dominated by induction of the pro-apoptotic BH3-only molecules BMF and BCL2L11/Bim, but we also observed an unexpected significant repression of the pro-apoptotic BCL2 protein PMAIP1/Noxa. Here, we report that GC represses Noxa mRNA levels and also interferes with its protein stability in a proteasome-dependent manner. Prevention of GC-mediated Noxa repression by conditional expression of transgenic Noxa changed the kinetics of GC-induced apoptosis to resemble cell death induced by BimEL alone. Hence, GC appear to activate functionally relevant pro- as well as anti-apoptotic pathways in ALL cells. Interfering with the anti-apoptotic component of the GC response might contribute to improved therapeutic approaches and circumvention of resistance to this therapy.  相似文献   

4.
Bim (Bcl-2-interacting mediator of cell death) is a BH3-only protein (BOP), a pro-apoptotic member of the Bcl-2 protein family. The Bim mRNA undergoes alternate splicing to give rise to the short, long and extra long protein variants (BimS, BimL and BimEL). These proteins have distinct potency in promoting death and distinct modes of regulation conferred by their interaction with other proteins. Quite how Bim and other BOPs promote apoptosis has been the subject of some debate. Bim was isolated by it’s interaction with pro-survival proteins such as Bcl-2 and it has been suggested that this is key to the ability of Bim to induce apoptosis. However, an alternative model argues that some forms of Bim can bind directly to the pro-apoptotic Bax and Bak proteins to initiate apoptosis. A new study may finally put this debate to rest as it provides strong evidence to suggest that Bim and other BOPs act primarily by binding to pro-survival Bcl-2 proteins, thereby releasing Bax or Bak proteins to promote apoptosis. The importance of the interaction between Bim and the pro-survival Bcl-2 proteins is underlined by our demonstration that it is regulated by ERK1/2-dependent phosphorylation of BimEL. ERK1/2-dependent dissociation of BimEL from pro-survival proteins is the first step in a process by which the pro-survival ERK1/2 pathway promotes the destruction of this most abundant Bim splice variant. In this review we outline the significance of these new studies to our understanding of how BOPs such as Bim initiate apoptosis and how this process is regulated by growth factor-dependent signalling pathways.  相似文献   

5.
Liu L  Chen J  Ji C  Zhang J  Sun J  Li Y  Xie Y  Gu S  Mao Y 《Molecules and cells》2008,26(2):193-199
The pro-apoptotic Bcl-2 family member Bim acts as a sensor for apoptotic stimuli and initiates apoptosis through the mitochondrial pathway. To identify novel regulators of Bim, we employed the yeast two-hybrid system and isolated the human gene encoding macrophage migration inhibitory factor (MIF), a ubiquitously expressed proinflammatory mediator that has also been implicated in cell proliferation, the cell cycle and carcinogenesis. The interaction between MIF and Bim was confirmed by both in vitro and in vivo protein interaction assays. Intriguingly, protein complexes between MIF and the three major Bim isoforms (BimEL/BimL/BimS) could be detected in HEK293 and K562 cells, especially in cells undergoing apoptosis. Moreover, exogenous expression of MIF partially inhibited Bim-induced apoptosis in HEK293 cells. SiRNA-mediated knockdown of MIF increased apoptosis in K562 cells exposed to the chemical oxidant diamide. Endogenous MIF may regulate the pro-apoptotic activity of Bim and inhibit the release of cytochrome c from mitochondria.  相似文献   

6.
7.
Studies in Bim-deficient mice have shown that the proapoptotic molecule Bim plays a key role in the control of B cell homeostasis and activation. However, the role of Bim in human B lymphocyte apoptosis is unknown. We show in this study that, depending on the degree of cross-linking, B cell receptors can mediate both Bim-dependent and apparent Bim-independent apoptotic pathways. Cross-linked anti-mu Ab-mediated activation induces an original pathway governing the expression of the various Bim isoforms. This new pathway involves the following three sequential steps: 1) extracellular signal-regulated kinase-dependent phosphorylation of the BimEL isoform, which is produced in large amounts in healthy B cells; 2) proteasome-mediated degradation of phosphorylated BimEL; and 3) increased expression of the shorter apoptotic isoforms BimL and BimS.  相似文献   

8.
Protracted mitotic arrest leads to cell death; however, the molecular signals that link these distinct processes remain poorly understood. Here we report that the pro-apoptotic BH3-only family member Bim undergoes phosphorylation in K562 cells following treatment with the microtubule targeting agents Taxol and Nocodazole. The phosphorylation of two Bim isoforms, BimEL and BimL, at the mitochondria correlates with mitotic arrest and precedes cell death induced by Taxol. It was also found that Bim undergoes transient phosphorylation during normal mitosis in K562 cells. In addition, siRNA silencing of Bim reduces sensitivity to Taxol-induced cell death. The transition of K562 cells from mitosis to G1 results in the loss of BimEL and BimL phosphorylation and correlates with the degradation of cyclin B1. The Cdk1 inhibitors, RO-3306 and Purvalanol A, block Bim phosphorylation in mitotically arrested cells. Importantly, it was found that cyclin B1 co-immunoprecipitates with endogenous Bim in mitotic extracts. Furthermore, active recombinant Cdk1/cyclin B1 phosphorylates BimEL and BimL in vitro and Serine 44 on BimL has been identified as a Cdk1 phosphorylation site. Collectively, these results suggest that Cdk1/cyclin B1-dependent hyper-phosphorylation of Bim during prolonged mitotic arrest is an important cell death signal.  相似文献   

9.
Glucocorticoids (GCs) represent an important component of modern treatment regimens for fludarabine-refractory or TP53-defective chronic lymphocytic leukemia (CLL). However, GC therapy is not effective in all patients. The molecular mechanisms responsible for GC-induced apoptosis and resistance were therefore investigated in primary malignant cells obtained from a cohort of 46 patients with CLL. Dexamethasone-induced apoptosis was unaffected by p53 dysfunction and more pronounced in cases with unmutated IGHV genes. Cross-resistance was observed between dexamethasone and other GCs but not fludarabine, indicating non-identical resistance mechanisms. GC treatment resulted in the upregulation of Bim mRNA and protein, but to comparable levels in both GC-resistant and sensitive cells. Pre-incubation with Bim siRNAs reduced GC-induced upregulation of Bim protein and conferred resistance to GC-induced apoptosis in previously GC-sensitive cells. GC-induced upregulation of Bim was associated with the activation of Bax and Bak in GC-sensitive but not -resistant CLL samples. Co-immunoprecipitation experiments showed that Bim does not interact directly with Bax or Bak, but is almost exclusively bound to Bcl-2 regardless of GC treatment. Taken together, these findings suggest that the GC-induced killing of CLL cells results from the indirect activation of Bax and Bak by upregulated Bim/Bcl-2 complexes, and that GC resistance results from the failure of such activation to occur.  相似文献   

10.
B lymphocyte receptor-mediated apoptosis is associated with increased expression of the BimL isoform of Bim. The mechanisms involved in the regulation of BimL protein expression are still unknown. We report that BimL expression following BCR activation is not associated with a specific increase of BimL mRNA but rather to the intron retention structure of the BimEL mRNA. Indeed, expression of a BimEL cDNA leads in Hela cells leads to the production of both BimEL and BimL proteins. Mutation of the intron-splicing GT sequence present in the exon 3 results in the production of only BimEL protein. Ectopic expression of BimEL cDNA resulted in a large increase of BimL expression upon BCR-stimulation, whereas cells transfected with the GT/AA mutated form of BimEL only produced BimEL proteins upon BCR-activation. These data showed that BimL expression induced by BCR activation may result from the splicing of BimEL mRNA independently of Bim promoter regulation.  相似文献   

11.
12.
Glucocorticoids (GC) control cell cycle progression and induce apoptosis in cells of the lymphoid lineage. Physiologically, these phenomena have been implicated in regulating immune functions and repertoire generation. Clinically, they form the basis of inclusion of GC in essentially all chemotherapy protocols for lymphoid malignancies. In spite of their significance, the molecular mechanisms underlying the anti-leukemic GC effects and the clinically important phenomenon of GC resistance are still unknown. This review summarizes recent findings related to GC-induced apoptosis, cell cycle arrest, and GC resistance with particular emphasis on acute lymphoblastic leukemia (ALL). We hypothesize that under conditions of physiological Bcl-2 expression, GC might induce classical programmed cell death by directly perturbing the Bcl-2 rheostat. In the presence of anti-apoptotic Bcl-2 proteins, cell death might result from accumulating catabolic and/or other detrimental GC effects driven by, and critically dependent on, GC receptor (GR) autoinduction. Although still controversial, there is increasing evidence for release of apoptogenic factors through pores in the outer mitochondrial membrane, rather than deltapsiloss-dependent membrane rupture, with maintenance of mitochondrial function at least in the early phase of the death response. GC-induced cell cycle arrest in ALL cells appears to be independent of apoptosis induction and vice versa, and critically depends on repression of both cyclin-D3 and c-myc followed by increased expression of the cyclin-dependent kinase inhibitor, p27Kip1. Since development of GC-resistant clones requires both cell cycle progression and survival, GC resistance might frequently result from structural or regulatory defects in GR expression, perhaps the most efficient means to target both pathways concurrently.  相似文献   

13.
14.
15.
16.
Bim (Bcl-2-interacting mediator of cell death) is a member of the BH3 domain-only subgroup of Bcl-2 family members, for which three splice variants have been described. Bim is expressed in many healthy cell types, where it is maintained in an inactive conformation through binding to the microtubule-associated dynein motor complex. Upon certain apoptotic stimuli, Bim is released from microtubules and mediates caspase-dependent apoptosis through a mechanism that is still unclear. Here, we have identified and characterized novel splice variants of human Bim mRNA. In particular, we show that a newly discovered, small protein isoform, BimAD, is also able to induce apoptosis strongly in several human cell lines. BimAD and the previously characterized isoform BimS are shown to be capable of heterodimerizing in vivo with both death antagonists (Bcl-2 and Bcl-X(L)) and death agonists (Bax). Mutants of BimAD that bind to Bax but not to Bcl-2 still promote apoptosis, indicating that Bim can regulate apoptosis through direct activation of the Bax-mediated cell death pathway without interaction with antiapoptotic Bcl-2 family members. Furthermore, we have shown that the interaction of the BimS and BimAD isoforms with Bax leads to a conformational change in this protein analogous to that triggered by the BH3-only protein Bid.  相似文献   

17.
18.
Glucocorticoids (GCs) are used for treatment of various hematopoietic malignancies owing to their ability to induce apoptosis. A major obstacle in leukemia therapy is the emergence of GC-resistant cells. Hence, combinatory treatment protocols should be developed that convert GC-resistant leukemia cells into sensitive ones. Here we demonstrate that the broad-acting kinase inhibitor staurosporine (STS) confers GC-sensitivity on GC-resistant T lymphoma cells expressing elevated levels of either Bcl-2 or Bcl-XL, but not on GC-resistant myelogenic leukemia cells expressing Mcl-1 in addition to Bcl-2 and/or Bcl-XL. In T lymphoma cells, STS induces the expression of the pro-apoptotic orphan receptor Nur77 that overcomes the anti-apoptotic effect of Bcl-2, thus enabling GC-induced apoptosis. However, in the myelogenic leukemia cells, STS does not up-regulate Nur77. In these cells, the glucocorticoid receptor (GR) is rapidly downregulated by GC and the anti-apoptotic Mcl-1 protein is upregulated by STS, thereby leading to an even more resistant phenotype. Altogether, our data provide a molecular basis for the differential apoptotic response of T lymphoma versus myelogenic leukemia cells to STS and GC. The former being sensitized to GC-induced apoptosis by STS, whereas in the latter, STS intensifies GC resistance. The cell type specific responses should be taken into consideration when combinatory therapy is used for treating hematopoietic malignancies.  相似文献   

19.
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoblastic leukemia cells. To investigate cell cycle effects of GC in the absence of obscuring apoptotic events, we used human CCRF-CEM leukemia cells protected from cell death by transgenic bcl-2. GC treatment arrested these cells in the G1 phase of the cell cycle due to repression of cyclin D3 and c-myc. Cyclin E and Cdk2 protein levels remained high, but the kinase complex was inactive due to increased levels of bound p27(Kip1). Conditional expression of cyclin D3 and/or c-myc was sufficient to prevent GC-induced G1 arrest and p27(Kip1) accumulation but, importantly, did not interfere with the induction of apoptosis. The combined data suggest that repression of both, c-myc and cyclin D3, is necessary to arrest human leukemia cells in the G1 phase of the cell division cycle, but that neither one is required for GC-induced apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号