首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为提高直流输电系统运行的可靠性,实现直流线路保护的有效动作,避免误动,必须对直流输电系统的电磁耦合特性进行研究。以云广特高压直流输电工程为研究对象,并参照其线路参数,建立了包含杆塔、输电线路、避雷器、绝缘子串闪络以及换流站内各种设备的仿真模型。采用EMTP,以雷击直流输电线路极导线、一极接地故障后对另一极的影响为具体算例进行仿真计算。对仿真结果进行分析,结果表明在故障情况下,对直流输电线路感应电压影响较明显的是土壤电阻率、极线间距与接地故障位置,而线路运行电压对感应电压的影响不大。比较研究了不同故障过电压仿真结果,对于雷击故障,可以用电压突变量的比值来确定故障极;对于接地故障,用分别对金属性接地和阻抗接地故障波进行小波变换分析的结果作为区分依据。最后,依据故障区分特性,提出了考虑电磁耦合的高压直流输电线路保护判据和保护整定方案,经过验证表明,所提出的保护判据可有效地区分输电线路故障。  相似文献   

2.
为了解决以往特高压直流输电工程中直流线路故障重启策略不完善导致直流功率波动甚至双极闭锁的不足,提出了把直流输电运行工况和运行功率点加入到直流线路故障重启策略中。利用RTDS对特高压直流输电线路接地故障进行仿真,建立直流输电线路接地故障等效模型。针对在故障极重启动过程中非故障极实际直流功率波动大的问题,提出采用闭锁非故障极低压电流(VDCL)功能的方法来减少非故障极实际直流功率的波动。以溪洛渡左岸-浙江金华±800k V特高压直流输电工程为试验背景,仿真试验证明:所提出的特高压直流输电线路故障重启优化策略能有效的提高系统线路故障时的稳定性,具有很好的工程实用性。  相似文献   

3.
介绍了溪洛渡至浙江金华(简称宾金)特高压直流输电系统线路保护动作情况,指出直流线路间电磁耦合产生的扰动导致了非故障极电压突变量保护动作。建立了特高压直流输电线路电磁耦合分析的电路模型,推导出解析方程,并对电磁耦合机理和扰动特征进行了深入的研究。经过RTDS仿真,分析了区内、区外故障时的直流电压波形特征,提出了电压突变量保护功能的优化策略。新的保护逻辑通过仿真试验,验证了其可行性和可靠性。  相似文献   

4.
介绍了溪洛渡至浙江金华(简称宾金)特高压直流输电系统线路保护动作情况,指出直流线路间电磁耦合产生的扰动导致了非故障极电压突变量保护动作。建立了特高压直流输电线路电磁耦合分析的电路模型,推导出解析方程,并对电磁耦合机理和扰动特征进行了深入的研究。经过RTDS仿真,分析了区内、区外故障时的直流电压波形特征,提出了电压突变量保护功能的优化策略。新的保护逻辑通过仿真试验,验证了其可行性和可靠性。  相似文献   

5.
林枫直流与葛南直流是世界上首个同塔双回直流输电工程,同塔架设的直流线路间存在电磁耦合,但各极导线间的耦合关系不会给直流系统稳态运行带来严重影响,只有当直流线路发生接地故障等情况下,故障产生的暂态分量会因电磁耦合的关系及线路参数不平衡等原因影响到其他正常运行的极导线。为此,首先对林枫直流系统调试时直流线路故障和丢失脉冲试验对同塔架设直流的影响进行了分析;其次,利用EMTDC建立同塔双回直流输电研究模型,在重现直流线路故障和丢失脉冲试验的基础上,深入分析了林枫直流一极线路故障导致健全极发生换相失败和林枫直流丢失脉冲故障导致葛南直流发生换相失败的原因。  相似文献   

6.
相模变换法分析特高压直流输电线路接地故障   总被引:2,自引:1,他引:2  
为研究双极运行的特高压直流输电系统中单极接地故障过电压,采用相模变换法分析了双极运行的特高压直流输电系统单极接地故障。首先建立故障时的模量电路,分析线路不同端口性质下健全极过电压的波形特征和幅值,然后结合模量电路分析,以云广直流输电工程为对象,建立了双极直流输电系统的单极接地故障模型,计算和分析了多种因素如故障接地电阻、直流滤波器的工作状态、平波电抗器的布置方式等的影响以及故障时健全极沿线的过电压幅值分布情况。结果表明,直流滤波器的投入与否将改变直流线路端口的阻抗性质,对故障时的过电压影响显著:投入直流滤波器时,中点接地故障时健全极过电压最大可达1.76p.u.,平波电抗器布置方式对健全极过电压幅值无影响;未投入直流滤波器时,平波电抗器布置方式将直接影响到健全极过电压的幅值。  相似文献   

7.
为研究双极运行的特高压直流输电系统中单极接地故障过电压,采用相模变换法分析了双极运行的特高压直流输电系统单极接地故障.首先建立故障时的模量电路,分析线路不同端口性质下健全极过电压的波形特征和幅值,然后结合模量电路分析,以云广直流输电工程为对象,建立了双极直流输电系统的单极接地故障模型,计算和分析了多种因素如故障接地电阻、直流滤波器的工作状态、平波电抗器的布置方式等的影响以及故障时健全极沿线的过电压幅值分布情况.结果表明,直流滤波器的投入与否将改变直流线路端口的阻抗性质,对故障时的过电压影响显著:投入直流滤波器时,中点接地故障时健全极过电压最大可达1.76 p.u.,平波电抗器布置方式对健全极过电压幅值无影响;未投入直流滤波器时,平波电抗器布置方式将直接影响到健全极过电压的幅值.  相似文献   

8.
特高压工程的直流输电线路接地故障试验发现运行阀组数目较多的一极直流输电线路发生接地故障时,另外一极的电压突变量保护可能会发生误动。为了解决此问题,文中首先指出故障行波共模分量的传输速率要小于差模分量的传输速率,共模分量和差模分量到达保护测点处存在一个时间差。其次,分析出电压突变量保护误动的原因是共模分量和差模分量到达保护测点处的时间差大于电压突变量保护的时间定值。接着,提出将共模分量的极性作为识别故障极的判据并据此改进了电压突变量保护。最后,搭建了特高压直流输电实时数字仿真模型,验证了分析结果和改进方法的正确性。  相似文献   

9.
混合直流输电系统整流侧采用电网换相换流器(line commutated converter,LCC),逆变侧采用混合型模块化多电平换流器(full half bridge modular multilevel converter,FH-MMC)。直流单极接地故障是直流输电系统主要故障类型,在发生直流侧单极接地故障时,混合直流输电需切换运行模式,LCC侧由双极运行转为单极运行,FH-MMC侧通过桥臂输出负电平电压消除交流电压直流偏置以及故障电流。通过对该运行模式下FH-MMC桥臂功率流动特性进行分析可知,上、下桥臂产生能量不平衡问题,导致故障桥臂子模块电容电压持续上升,影响开关器件的安全运行。为此,基于基频环流注入的能量平衡策略提出一种直流单极故障穿越控制策略,保证直流母线单极接地故障下正常极仍可传递一半的额定功率,实现混合直流输电不停机运行。最后,在PSCAD/EMTDC中搭建混合直流输电仿真模型,仿真结果验证了所提控制策略的有效性。  相似文献   

10.
实现特高压直流输电工程接地极的准确故障定位有利于提高故障排查效率,对确保接地极及高压直流输电系统的正常运行具有重要现实意义.文章提出了基于回归分析法的特高压直流输电工程接地极线路故障定位方法.分析了接地极线路发生不同类型故障时的电气量变化特征,研究了暂态过电压的形成原因.基于故障后稳态电压和电流的直流量给出了过渡电阻的求解方法,通过回归分析法建立了不同过渡电阻下故障位置与暂态过电压的关系模型,实现了不同过渡电阻下的故障定位.应用于某工程±800 kV接地极系统中的仿真算例结果表明,该方法具有较高的故障定位精度,且对不同故障过渡电阻具有较好的适用性.  相似文献   

11.
针对宾金特高压直流2014年7月31日不对称运行时所出现的极1故障导致极2闭锁事件进行了细致的分析。分析结果表明,由于特高压直流线路采用同塔双回方式架设,线路间互感作用明显,在暂态过程中一极电流突变会在另一极中产生明显的感应电压,导致直流电流失控。对特高压直流同塔双回输电线路互感作用的机理进行了分析,并探讨了互感在暂态过程中对电压突变量保护的影响。最后根据试验结果对电压突变量保护的定制修改提出了建议。  相似文献   

12.
大型风电能源基地通过特高压直流工程外送时,风机的接入使电网运行特性更加复杂多变,有必要研究单极接地故障下含风电场的特高压直流系统暂态特性。文中建立了风电接入的特高压直流系统电磁暂态仿真模型,通过等效模量法分析了单极接地故障下直流侧过电压的产生机理,讨论了交流侧及风机并网点电压波动的原因;在此基础上,研究了接地点位置、端部阻抗、功率输送等因素对系统电磁暂态特性的影响及规律。结果表明,双极运行下单极接地故障发生在线路中点时,健全极过电压最大;直流滤波主电容对健全极过电压影响较大;故障时无功功率不平衡导致风机接入点电压升高,该过电压与系统功率输送有关,可引起风机高压脱网并使故障继续扩大。文中获得了含风电特高压直流系统及风机的暂态特性及影响因素,对于指导过电压的抑制具有重要的参考价值。  相似文献   

13.
受端分层的特高压直流输电工程在交流系统单一电压等级发生故障时,不仅会导致本层阀组发生换相失败,而且可能引发另外一层阀组换相失败。在故障恢复过程中,层间交直流系统的相互影响还会引发连续多次换相失败。提出基于实时故障检测判定的换相失败控制和恢复策略,可准确判定故障状态、故障发生的电压层级、故障的持续时间。针对交流系统瞬时性故障,仅在发生严重故障时启动控制策略,并防止恢复过程中提前再启动,减少自动再启动次数。当单层交流系统永久性严重故障时,隔离故障层,转为双极半压运行方式。根据昌吉-古泉特高压直流输电工程搭建PSCAD/EMTDC仿真模型,设置多种故障情况,结果表明所提策略能有效降低连续换相失败次数,加快故障恢复,提高输电可靠性。  相似文献   

14.
将特高压直流输电线路单极接地故障过电压分成第一次跃升和第二次跃升2个过程,并基于极线间的电磁耦合作用和波过程阐述了2次电压跃升的产生机理;分析了直流滤波器主电容、直流滤波器型式、直流控制系统、杆塔接地电阻、线路中点杆塔是否装设避雷器、输电线路参数和输送功率等多种因素对该过电压的影响。仿真结果表明,直流滤波器主电容参数是限制单极接地故障过电压的关键因素,其他因素对该过电压影响不大,为控制过电压幅值不超过额定电压的1.7倍,建议±800 k V特高压线路的直流滤波器主电容参数取值范围为1~2μF。  相似文献   

15.
龚飞  李林  赵森林  邹强  汪大全 《电气技术》2021,22(11):36-41
特高压直流输电双极长线路间存在非常明显的互感影响,当一极线路故障时,另一极线路电压因受互感影响会以较快的速度降到较低值,此现象与直流线路发生接地故障时的电压变化规律基本相同,容易引起直流线路电压突变量保护误动.本文首先对直流线路突变量保护误动的机理进行深入分析,利用双极线路互感影响造成的电压下降与实际接地故障造成的电压下降在恢复特性上的差异性,提出考虑互感影响时的闭锁电压突变量保护策略,并在实时数字仿真试验平台上对该策略进行试验验证,证明了所提策略的有效性,为其他直流工程提供参考.  相似文献   

16.
为研究特高压直流输电线路暂态保护,需要对故障暂态信号高频量的频率特性进行深入研究。分析特高压直流输电线路故障机理,提出由平波电抗器、直流滤波器和PLC滤波器组成特高压直流输电"线路边界"并分析其频率特性。根据云广特高压直流输电系统实际参数,建立云广特高压直流输电仿真模型,对特高压直流输电线路雷击、接地短路、高阻接地以及换相失败进行仿真分析,对各故障暂态信号进行频谱分析并对区内、区外故障的频谱特性进行比较,得到同一种故障在区内、区外故障时故障暂态信号的频率特性特点。  相似文献   

17.
为了从电网结构上有效解决传统两端特高压直流输电系统因大容量功率传输对受端交流系统冲击较大的问题,该文提出了采取分极接入交流电网的方式,将直流功率输送至2个不同区域、不同电压等级的电网中。建立了分极接入模式下交直流系统的等效模型,给出了分极接入短路比定义,并分析了分极接入模式下短路比对功率传输能力的影响;基于对特高压直流输电控制系统分层结构的分析,对分极接入控制系统结构配置方案进行优化;以河南电网2020年规划为依据,应用PSCAD/EM TDC仿真验证了控制策略的合理性并对故障响应进行了分析,研究一极发生故障对健全极功率传输的影响,验证了分极接入的优势,为特高压直流输电的电网规划提供设计参考。  相似文献   

18.
永磁直驱风力发电系统最大功率追踪策略研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究特高压直流输电线路暂态保护,需要对故障暂态信号高频量的频率特性进行深入研究。分析特高压直流输电线路故障机理,提出由平波电抗器、直流滤波器和PLC滤波器组成特高压直流输电“线路边界”并分析其频率特性。根据云广特高压直流输电系统实际参数,建立云广特高压直流输电仿真模型,对特高压直流输电线路雷击、接地短路、高阻接地以及换相失败进行仿真分析,对各故障暂态信号进行频谱分析并对区内、区外故障的频谱特性进行比较,得到同一种故障在区内、区外故障时故障暂态信号的频率特性特点。  相似文献   

19.
特高压直流输电线路暂态能量保护   总被引:11,自引:4,他引:7  
在分析±800 kV特高压直流输电线路区内外故障、雷击等暂态过程的基础上,提出了一种特高压直流输电线路暂态能量保护新原理。该原理根据各种暂态过程中线路两侧低频能量差值的故障特征,实现了区内故障及其故障极的快速准确识别。基于PSCAD/EMTDC的大量仿真验证,结果表明该保护原理简单、可靠、实用性强,具有绝对的选择性,不受雷击干扰、两极线路电磁耦合和换相失败的影响,高阻接地故障仍具有足够的灵敏性,能满足特高压直流线路对保护性能的要求,可在当前高压直流控制保护系统硬件条件下实现。  相似文献   

20.
针对特高压直流输电工程中两极直流线路间的影响,应用线路间互感原理,对高压直流输电线路电磁耦合机理和扰动特征进行了深入的研究。从理论上计算了宾金直流输电工程两直流线路间存在较大的电磁耦合分量。通过RTDS建立的仿真模型,研究了一极线路故障时去游离时间长短、两极线路间距大小和一极电流升降速率大小对另一运行极控制系统的影响,结合现场实际线路故障的波形对宾金直流控制策略提出了优化方案。通过RTDS仿真验证了优化后的控制策略能在一极发生线路故障时对非故障极的影响降低到最小,有效地防止了双极闭锁,对于电网的可靠安全运行具有重大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号