首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
《Tribology International》2012,45(12):1864-1871
Experimental studies on the performances of both new developed environmental friendly vegetable based cutting fluids (refined sunflower and canola oils) including different percentage of extreme pressure (EP) additive and two commercial cutting fluids (semi-synthetic and mineral cutting fluids) in turning processes were reported in this work. Performances of cutting fluids were compared with respect to surface roughness, cutting and feed forces and tool wear during longitudinal turning of AISI 304L. Experimental results were also compared with dry cutting conditions. The results indicated that 8% of EP included canola based cutting fluid performed better than the rest.  相似文献   

2.
3.
Abstract

Surface roughness is one of the most common criteria indicating the surface finish of the part, which depends on various factors including cutting parameters, geometry of the tool, and cutting fluid. One of the goals of using cutting fluids in machining processes is to achieve improved surface finish. In addition to high costs, commonly used cutting fluids cause dermal and respiratory problems to the operators as well as environmental pollution. The present article aims at investigating the effect of spray cryogenic cooling via liquid nitrogen on surface roughness and cutting ratio in turning process of AISI 304 stainless steel. Through conducting experimental tests, the effects of cutting speed, feed rate, and depth of cut on surface roughness and cutting ratio have been compared in dry and cryogenic turning. A total number of 72 tests have been carried out. Results show that cryogenic turning of AISI 304 stainless steel reduces surface roughness 1%–27% (13% on the average), compared to dry turning. The obtained results showed that the cutting ratio in cryogenic turning is averagely increased by 32% in comparison with dry turning, also that chip breakage is improved in cryogenic turning.  相似文献   

4.
In this study, performances of four different types of vegetable‐based cutting fluids (VBCFs) over a commercial mineral cutting fluid were evaluated for machinability of Al 7075‐T6. Lubrication properties of VBCFs were improved with additive of extreme pressure. Cutting force and tool wear data were obtained for performance analyses of cutting fluids during longitudinal turning of Al 7075‐T6. Cutting, feed and radial forces indicated 1.70–38.25% improvements for VBCFs over the commercial mineral cutting fluid. The lowest average values of flank and nose wears obtained with blended cutting fluid containing 12% of extreme pressure were 0.09 and 0.10 mm, respectively, whereas these values for the commercial mineral cutting fluid were 0.18 and 0.15 mm. The scanning electron microscope results showed adherence of workpiece material occurred on rake and flank faces, and flank and nose wears were the dominant wear modes. It was found that performances of VBCFs during turning of Al 7075‐T6 were better than that of the commercial mineral cutting fluid. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Several health and environmental related issues caused by the application of traditional cutting fluids in machining can be solved by implementing eco-friendly technologies such as minimum quantity lubrication (MQL). Moreover, nanofluid MQL has been proposed to enhance the cooling/lubricating properties of pure MQL and displays significantly good results for machinability. However, the mechanism on compatibility of nanoparticles with cutting fluids has not been explored. In this study, nanoparticles with different hardness and vegetable oils with different viscosity were selected for nanofluids preparation. The end milling experiments were carried out on 7050 material by applying MQL with particularly prepared nanofluids. The cutting force and surface roughness were measured corresponding to the machining performance. The compatibility of hardness of nanoparticles with viscosity of base fluids has been evaluated, and the mechanism has been analyzed by new-designed tribology tests. Results show that canola oil-based diamond nanofluids MQL exhibit the lowest cutting force and natural77 oil-based diamond nanofluids perform the lowest surface roughness with reduction of 10.71 and 14.92%, respectively, compared to dry machining condition. The research is novel and contributes to the machining of such materials at the industry level.  相似文献   

6.
Environmentally conscious hard turning and technology have placed increasing importance on the machining process. Cutting fluids have a significant impact on the environment, thus numerous research works are being performed to minimize their use. However, tool wear is very severe in hard turning cemented carbides without the use of cutting fluids. In this research, the effects of dry and wet cutting methods (vegetable oil mist and mineral oil) and tool material on cutting resistance and wear characteristics of cutting tools were experimentally investigated to study the possibility of creating an environmentally conscious hard turning of cemented carbides. Mist and wet cutting of the cemented carbides using poly-crystalline diamond (PCD) cutting tools were adopted to investigate how tool wear on the basis of micro-cutting in the Scanning Electron Microscope (SEM) can be reduced. Additionally, the poly-crystalline cubic boron nitride (PcBN) and the usual cBN cutting tools were compared with the PCD cutting tools. This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.recommended for publication in revised form by Associate Editor Dae-Eun Kim HEO Sung Jung was born in Busan, R. O. K., in 1958. He received the Ph.D. in Mechanical Engineering from Osaka University, Osaka, Japan. He is a Full Professor of Mechanical Engineering at Doowon Technical College, Ansong -si, Gyonggi-do, Republic of Korea. His current research interests are in the areas of cutting of difficult-to-cut materials, environmentally conscious machining and cutting tool design.  相似文献   

7.
Corn, canola, and castor-lauric estolide oils were chemically modified by photochemical direct reaction of butanethiol with the double bonds on the hydrocarbon chains. The effect of chemical modifications on viscosity, viscosity index (VI), pour point (PP), cloud point (CP), oxidation stability (RPVOT), 4-ball anti-wear (AW), and extreme pressure (EP) were investigated. The sulfide modified (SM) corn and canola oils showed increased viscosity, increased RPVOT time (more than one order of magnitude), reduced PP (9?C18 °C), and reduced VI. The SM estolide displayed similar trends in VI and RPVOT but showed no change in viscosity or cold flow. The SM oils, along with commercial mono- and polysulfide additives were also investigated as additives, at 0.6% (w/w) S concentration, in corn and polyalphaolefin (PAO) base fluids. In both fluids, the additives resulted in minor changes of PP, CP, coefficient of friction, wear scar diameter (WSD), and weld point (WP). Only the commercial polysulfide EP additive displayed large WP increases in the fluids. The additives resulted in no change of oxidation stability of corn oil, but displayed big improvement in the oxidation stability of PAO (8 to 16-fold increase in RPVOT time). The difference in the effect of the additives on the oxidation stability of PAO versus corn oil was attributed to the difference in the reactive hydrogen contents in the two base fluids relative to those in the additives. An empirical equation, for correlating change in RPVOT time with change in bond dissociation energy of reactive protons before and after chemical modification, is proposed.  相似文献   

8.
In the beginning, metalworking fluids consisted of simple oils applied with brushes to lubricate and cool the machine tool. As cutting operations became more severe, metalworking fluid formulation became more complex. There are now several types of metalworking fluids in the market and the most common can be broadly categorized as cutting oils or water-miscible fluids. In this paper, attention is focused on recent research work on formulation and application of vegetable oil-based metalworking fluids in turning process. In addition, the performances of various vegetable oil-based metalworking fluids based on some process parameters such as thrust force, surface roughness, temperature developed at the tool chip interface, and tool wear during turning process using different tool materials were highlighted.  相似文献   

9.
Product quality is one of the most important criteria for the assessment of hard turning process. However, in view of the high temperatures developed in hard turning process, the surface quality deteriorates due to the tool wear. Because of the strict environmental restrictions on the use of cutting fluids, new cutting techniques are required to be investigated to reduce the tool wear. In the present work, the use of solid lubricants during hard turning has been explored while machining bearing steel with mixed ceramic inserts at different cutting conditions and tool geometry. Results show considerable improvement in the surface finish with the use of solid lubricants. Due to the presence of solid lubricants, there is a decrease of surface roughness values from 8 to 15% as compared to dry hard turning.  相似文献   

10.
Productivity in machining of 17-4 PH stainless steel is adversely affected by the premature failure of tool and poor surface finish as a consequence of high cutting temperatures. Conventional cutting fluids not only create environmental and health problems but also fail to overcome the high cutting temperatures during machining. Cryogenic cooling is an environmentally clean cooling technology for attractive management of machining zone temperatures. The present study investigates the effect of cryogenic liquid nitrogen (LN2 at ?196°C) on cutting temperatures, cutting forces (main cutting force, feed force), surface roughness, tool flank wear and chip morphology in turning of 17-4 PH stainless steel with AlTiN PVD-coated tungsten-coated carbide inserts and results were compared to wet machining. In overall, cryogenic machining reduces the cutting temperature, cutting forces, surface roughness and tool flank wear to a maximum of 73.4, 17.62, 44.29 and 55.55%, respectively. Improved chip breakability was found in cryogenic machining.  相似文献   

11.
针对切削液不易渗入到切削区起润滑作用的问题,提出利用内部填充油酸(OA)的多壁碳纳米管(MWCNTs)复合物为添加剂制备纳米流体,该纳米流体更易渗入到切削区,且复合物可在切削时释放油酸起增强润滑的作用。首先测试了纳米流体的热物理性能,考察了它在微量润滑(MQL)条件下车削GCr15钢的性能,然后研究了切削过程中复合物的冷却润滑特性。结果表明:与普通MWCNTs相比,复合物能更好地提高纳米流体的分散稳定性、传热性和润湿性;与普通乳化液相比,复合物纳米流体车削时的切削力减小约15%,切削温度降低约25%,工件表面粗糙度值减小16%,刀具耐用度提高了22%。  相似文献   

12.
This paper presents an investigation into the MQL (minimum quantity lubrication) and wet turning processes of AISI 1045 work material with the objective of suggesting the experimental model in order to predict the cutting force and surface roughness, to select the optimal cutting parameters, and to analyze the effects of cutting parameters on machinability. Fractional factorial design and central composite design were used for the experiment plan. Cutting force and surface roughness according to cutting parameters were measured through the external cylindrical turning based on the experiment plan. The measured data were analyzed by regression analysis and verification experiments were conducted to confirm the results. From the experimental results and regression analysis, this research project suggested the experimental equations, proposed the optimal cutting parameters, and analyzed the effects of cutting parameters on surface roughness and cutting force in the MQL and wet turning processes.  相似文献   

13.
通过优化切削参数(切削速度、进给量和切削深度)可以获得精密车削马氏体3J33最佳表面粗糙度。切削试验采用二次旋转组合设计的方法,使用谢菲尔大学研究的遗传算法工具箱所获得的在特定约束条件下表面粗糙度预测模型,应用遗传算法对切削用量对表面粗糙度的优化计算,并将其结果和非线性优化计算结果进行比较,两种计算结果基本吻合。本文的目的在于在特定切削参数条件下预测表面粗糙度。  相似文献   

14.
Cutting fluids play a significant role in machining operations, impact shop productivity, tool life and quality of work. The reduction in the consumption rate of the cutting fluid leads to the minimization of production cost and environmental hazards. This could be achieved by the enhancement of its thermal and tribological properties with the inclusion of suitable additives in the cutting fluid. In recent years various nanoparticles were used as additives in the conventional cutting fluid to enhance its properties. In the present work, silver nanoparticles was synthesized, characterized, dispersed in cutting fluid and experimented in a turning operation. Heat carrying capacities of the cutting fluid, cutting forces during machining process and surface finish of the work piece were assessed by suitable instruments for cutting fluids with and without silver nanoparticles under different machining conditions. From the experimental results, it was observed that inclusion of silver nanoparticles in cutting fluid showed a significant reduction in tool tip temperature, cutting force and surface roughness of the work piece.  相似文献   

15.
Control of machining zone temperature is achieved by providing effective cooling and lubrication. Though cutting fluids are widely used to carry away the heat in metal cutting, they cannot be recommended in the light of ecological and economic manufacture. Hence, there arises a need to identify eco‐friendly and user‐friendly alternatives to conventional cutting fluids. The present work features a specific study of the application of molybdenum disulphide as solid lubricant for improving tribological properties in turning and to overcome the limitations that arise with the use of cutting fluids or while dry machining. An experimental setup developed has been used to maintain constant flow rate of solid lubricant powder continuously on to the workpiece and tool interface zone. Results are encouraging with overall improvement in machining properties in terms considered parameters as compared to wet and dry techniques, due to the reduction in friction at tool/work and tool/chip interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The temperature distributions on the surface of Si3N4 and Ti(CN) ceramic cutting tools for turning different metallic materials were calculated and plotted using computer simulation based on a mathematic model of heat sources. The results showed that the temperature on the rake face of the ceramic cutting tools for turning 18-8 stainless steel was much higher than that for turning 1045 plain carbon steel due to the much lower thermal conductivity of the former, the temperature increased with increasing cutting speed. This observation is important in explaining the wear resistance and wear mechanisms of the two ceramic cutting tools. The computed temperature distributions on the surface of the ceramic cutting tools were checked by measurement with a thermal video system (TVS), and showed good agreement.  相似文献   

17.
Minimal quantity lubrication in turning: Effect on tool wear   总被引:2,自引:0,他引:2  
A. Attanasio  M. Gelfi  C. Giardini  C. Remino 《Wear》2006,260(3):333-338
Industries and researchers are trying to reduce the use of coolant lubricant fluids in metal cutting to obtain safety, environmental and economical benefits. The aim of this research is to determine if the minimal quantity lubrication (MQL) technique in turning gives some advantages in terms of tool wear reduction. This paper reports the results obtained from turning tests and SEM analysis of tools, at two feed rates and two cutting lengths, using MQL on the rake and flank of the tool. The results obtained show that when MQL is applied to the tool rake, tool life is generally no different from dry conditions, but MQL applied to the tool flank can increase tool life.  相似文献   

18.
Surface Integrity and Machineability in Intermittent Hard Turning   总被引:1,自引:1,他引:0  
Despite the large amount of research on hard turning, there are few results on intermittent hard turning. In this paper, the feasibility of internal intermittent hard turning has been investigated. First, the cutting tools with different cubic boron nitride (CBN) contents were evaluated, based on machineability: tool wear, surface roughness, and cutting forces. In the case of intermittent turning, low CBN content tools had better machineability than high CBN content tools. The depth of the machining damaged layer and the magnitude and distribution of residual stress were evaluated. The experimental results showed that intermittent hard turning can produce surface integrity which is good enough for replacing the grinding process.  相似文献   

19.
As a means to overcome the limitations of cutting fluids in machining, more and more attention is being paid to the internal cooling of cutting tools. The elevated cutting zone temperature in hard turning causes the instant boiling of coolant in the cutting zone, which pulls down the tool life and surface finish, by making thermal distortions and hence in most of the hard turning operations, the coolant is not used at all. The absence of coolant also reduces the tool life and surface finish to some extent. As an alternative solution to the direct application of coolant in the metal cutting zone to improve tool life and surface finish, the heat pipe cooling system is introduced in this investigation. A parametric study is conducted to analyze the effects of different heat pipe parameters such as diameter of heat pipe, length of heat pipe, magnitude of vacuum in the heat pipe and material of heat pipe. All these parameters are varied to three levels. In this analysis, it is assumed that the single point cutting tool is subjected to static heating in the cutting zone which verifies the analysis and feasibility of using heat pipe cooling in turning operations. The heat pipe parameters are optimized by using Taguchi’s Design of Experiments and a confirmation test is conducted by employing the heat pipe fabricated with the best values of parameters. The results of the confirmation test are compared with the previous experimental results. The comparison shows that the use of a heat pipe in hard turning operations reduces the temperature field by about 5%, improves tool life by reducing tool wear and improves surface finish significantly. The result of this analysis is applicable to define controlling parameters of heat pipes for optimal design and set-up for various related studies. The finite element analysis also shows that the temperature drops greatly at the cutting zone and that the heat flow to the tool is effectively removed when a heat pipe is incorporated.  相似文献   

20.
通过使用PCBN刀具精密干式车削淬硬Cr12MoV工具钢(62±1 HRC)的试验,分析了切削速度对三向切削力的影响,得出了最优切削速度。试验表明:随切削速度提高,三向切削力先急剧增大,后急剧减小,再又缓慢增大。若从最小车削合力与提高加工效率两个角度来优化切削速度,则226 n/min是最优切削速度。试验结果也对精密干式切削淬硬工具钢具有实际指导意义与参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号