首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fundamental aim of the present research is to study the effect of dimple shape and area density on abrasive wear in lubricated sliding. The other aims are to recommend a method of obtaining the local linear wear of a textured ring on the basis of profilometric measurement and to analyse the changes in the surface topography of this ring with selection of parameters that could monitor the “zero-wear” process.The experiments were conducted on a block-on ring tester. The stationary block made from cast iron of 50 HRC hardness was ground. The rotated ground ring was made from 42CrMO4 steel of 32 HRC hardness. The rings were modified by a burnishing technique in order to obtain surfaces with oil pockets. Oil pockets of spherical and of drop shape were tested. The pit-area ratios were in the range: 7.5–20%. The tested assembly was lubricated by oil L-AN 46. Because of the great hardness of the co-acting parts the wear resistance test was carried out under artificially increased dustiness conditions. The dust consists mainly of SiO2 and Al2O3 particles. Measurement of local microscopic ring wear was made using a three-dimensional scanning instrument. The tendencies of ring surface topography changes during wear were analysed. Various methods of obtaining the local wear value during a low wear process were proposed and compared. We found that a spherical shape of dimples was superior to a drop shape with regard to wear resistance of steel rings.  相似文献   

2.
The experiments were carried out using a block-on-ring tester. The stationary blocks were modified by a burnishing technique in order to obtain surfaces with oil pockets of spherical shape. The area density of oil pockets varied in order to explore their effect on wear resistance and wear intensity. Specimen surfaces had dimples with depths 45-60 μm and diameters 1-1.2 mm. The area density of oil pockets Sp was in the range 4-20%. The block samples were made from bronze B101 (CuSn10P) of 138 HB hardness. The rotated rings were made from 42CrMo4 steel, hardness of 40 HRC obtained after heat treatment. The tested assembly was lubricated by mineral oil L-AN 46. The experiment was carried out under artificially increased dustiness conditions. The dust added to oil consists mainly of SiO2 (74%) and Al2O3 (15%) particles. During the test friction force and temperature of block sample were registered. The tendencies of block surface topography changes during wear were analysed. It was found that sliding pairs with textured specimens were not superior to a system with a turned block with regard to abrasive wear resistance.  相似文献   

3.
A purpose of this research is to study the influence of geometrical characteristics of the surface texture on the Stribeck curve in lubricating sliding.The tribosystem consists of the stationary block pressed at the required constant load 1800 N against the ring rotating at the defined speeds. Tests were conducted at increasing sliding speed of range 0.08–0.69 m/s. Every speed was maintained for 2 min. The test was carried out under conformal contact conditions. The sliding was unidirectional. The block was a part of a bearing sleeve hardened EN-GJS 400-15 cast iron with a hardness value of 50 HRC. The ring samples, 35 mm in diameter, were made from hardened 42CrMo4 steel of hardness 32 HRC. Some variants of specimen surfaces were created by burnishing technique. The area density of oil pockets S was in the range 7.5–20%. The dimples depth to length ratios were between 0.03 and 0.08. Ring surfaces with oil pockets of short drop, long drop and spherical shapes were tested.It was shown that with proper shape and dimensions as well as suitable area density of oil pockets the friction characteristic of the sliding pairs could be improved in comparison to non-textured surfaces.  相似文献   

4.
The results of experimental investigations on the effect of the oil pockets existence on seizure resistance of sliding elements are presented. Seizure tests were conducted with block-on-ring apparatus at increasing pressure. The stationary block (counter specimen) contacted the rotating steel ring (specimen). The tested assemblies were lubricated by oil L-AN 46, which was heated to 30 °C before each experiment. The sliding was unidirectional. The block was a part of a bearing sleeve-hardened EN-GJS 400-15 cast iron with a hardness value of 50 HRC. The ring samples, 35 mm in diameter, were made from hardened 42CrMo4 steel of hardness 32 HRC. The friction force and temperature near the contact zone were measured during the tests. Some variants of specimen surfaces were created by burnishing technique. They were characterised by the oil pocket density, the holes depth, length, and width. The oil pockets existence of area density of 10% on the ring surface improved seizure resistance of the sliding pair steel-cast iron for speed of 0.27 m/s. The pit shape and orientation are very important, too.  相似文献   

5.
The tribosystem consisted of a stationary block pressed at a required load P against a ring rotating at a defined speed. Sliding was unidirectional. Block samples, made from bronze CuSn10P with 138-HB hardness, were modified using a burnishing technique to obtain surfaces with circular oil pockets. Rings were made from 42CrMo4 steel, of hardness 40 HRC, which was obtained after heat treatment. Tests were conducted at a constant speed of 0.27 m/s. Before the test, an oil drop was added to lubricate sliding surfaces. A seizure resistance test was carried out at constant normal load of 2700 N. Tribotests were automatically stopped when the coefficient of friction reached a limit value 0.15. Selected textured samples clearly exhibited a lifetime longer than untextured reference specimens.  相似文献   

6.
This paper reports an experimental study of the effect of surface texture on cylinder liner wear. This research is important because the conjunction between piston rings and cylinder liner is one of the major sources to frictional losses in internal combustion engines. Experiments were conducted on a reciprocating tester. Specimens were cut from cylinder liners honed or plateau honed made of grey cast iron of hardness 218 HB. The honing operation was performed in order to obtain very similar values of the Sq parameter of one-process and two-process surfaces. In addition, one-process specimens characterised by different Sq parameter values were tested. Counter-specimens were made from chromium-coated steel C45. It was found that wear of two-process surfaces was lower than that of one-process surfaces characterized by the same Sq parameter. Linear wear of specimens was proportional to initial Sq parameter value. The effect of additional oil pockets created by the burnishing technique on cylinder liner wear was negligible.  相似文献   

7.
In this paper the use of the ball burnishing process to improve the final quality of Inconel 718 surfaces is studied. This process changes the roughness and residual stresses of the previously end milled surfaces, achieving the finishing requirements for engine components. Both the burnishing system and main parameters are taken into account, considering their influence on finishing. Workpiece surface integrity is ensured due to the compression effect of this surfacef enhancement process and its associated cold working. Results of different tested pieces are discussed in relation to the maximum and mean surface roughness achieved microstructure and surface hardness. Results of heat-treated low carbon mould steel P20 (32 HRC) are compared with those for the nickel alloy Inconel 718 (solution treated and age hardening, 40 HRC). The main conclusions are that using a large radial width of cut in the previous end milling operation, together with a small radial width of cut during burnishing can produce acceptable final roughness. And compression cold working is higher and deeper in the Inconel 718 than in the steel case.  相似文献   

8.
9.
Ball burnishing is a plastic deformation process used as a surface smoothing and surface improvement finishing treatment after turning or milling processes. This process changes the surface stereometrics of the previously machining surface. Burnishing with hydrostatic tools can be easily and effectively used on both conventional and Computer Numeric Control(CNC) machines. The existing research of the burnishing process mainly focuses on the functional surface characterization, for example, surface roughness, wear resistance, surface layer hardness, etc. There is a lack of references reporting a detailed analysis of 3D parameters calculation with a mathematical model to evaluate the results of the ball burnishing. This paper presents the effect of ball burnishing process parameters with hydrostatic tools on the resulting surface structure geometry. The surface topography parameters were calculated using the Taly Map software. Studies were conducted based on Hartley's static, determined plan. Such a plan can be built on a hypersphere or hypercube. In this work, a hypercube was used. In the case of Hartley's plan makes it possible to define the regression equation in the form of a polynomial of the second degree. The input process parameters considered in this study include the burnishing rate, applied pressure, and line-to-line pitch. The significant influence of these parameters was confirmed and described as a mathematical power model. The results also showed a positive effect of hydrostatic burnishing on the roughness and geometric structure of the surface.  相似文献   

10.
Conventional ball burnishing processes using a roller or a ball pressed against round or small flat surfaces have long been used to improve hardness, fatigue strength, and wear resistance of mechanical parts by plastic deformation. However, the treatment of large flat surfaces using conventional techniques is rarely considered because of its time consumption. In the present work, the optimal burnishing parameters of rolled sheets of aluminum 1050A are determined by means of a newly developed burnishing tool device especially designed to treat large flat surfaces with orders of magnitude reduction in burnishing time. Experiments were designed and performed on a machining center based on response surface methodology with central composite design. The burnished specimens were then tested to find the burnishing condition under which ductility was improved. This study has resulted in significant new insights into the effect of burnishing on the surface quality and workpiece properties of aluminum 1050A plates. A second-order mathematical model, validated using data obtained from atomic force microscopy, was developed to predict the surface roughness as functions of speed, force, and feed rate. The results indicate that burnishing of aluminum 1050A plates improves its ductility, but not its micro-hardness. Following the various burnishing conditions, the micro-hardness measurements range from 40 to 43?HV (50?g), indicating that there is little or no hardening. Although a moderate effect with varied degrees is found on the surface roughness as functions of the investigated parameters, the burnishing force has a significant effect on ductility. The results also indicate that lower values of roughness do not guarantee better ductility for aluminum 1050A plates. Furthermore, the effect of the burnishing loads on the residual stresses was found to depend on the feed direction.  相似文献   

11.
Burnishing is a chipless finishing method, which employs a rolling tool, pressed against the workpiece, in order to achieve plastic deformation of the surface layer. Recent developments made possible burnishing of heat-treated steel components up to 65 HRC. Features of burnishing include a good roughness (comparable to grinding), as well as improvement of mechanical characteristics of the surface (fatigue strength, corrosion resistance, and bearing ratio), due to implementation of compressive stresses into the surface layer. This paper will present influences of certain burnishing parameters upon roughness, for a hardened steel component (64 HRC).  相似文献   

12.
粉末热锻浮动油封密封环的耐磨性研究   总被引:4,自引:1,他引:4  
研究了粉末热锻浮动油封密封环的材质、表面处理、显微组织对其耐磨性的影响。试验结果表明:粉末热锻Fe-Cu-Mo-C材质浮动油封密封环的表面硬度大于HRC63,工作表面存在弥散微孔,具有贮油作用,有利于油膜形成,从而提高其耐磨性。  相似文献   

13.
This paper studies the impact of a special carbide tool design on the process viability of the face milling of hardened AISI D3 steel (with a hardness of 60 HRC), in terms of surface quality and tool life. Due to the advances in the manufacturing of PVD AlCrN tungsten carbide coated tools, it is possible to use them in the manufacturing of mould and die components. Experimental results show that surface roughness (Ra) values from 0.1 to 0.3 μm can be obtained in the workpiece with an acceptable level of tool life. These outcomes suggest that these tools are suitable for the finishing of hardened steel parts and can compete with other finishing processes. The tool performance is explained after a tool wear characterization, in which two wear zones were distinguished: the region along the cutting edge where the cutting angle (κ) is maximum (κmax) for a given depth of cut, and the zone where the cutting angle is minimum (κ?=?0) that generates the desired surface. An additional machining test run was made to plot the topography of the surface and to measure dimensional variations. Finally, for the parameters optimal selection, frequency histograms of Ra distribution were obtained establishing the relationship between key milling process parameters (Vc and fz), surface roughness and tool wear morphology.  相似文献   

14.
Ann Sundstrm  Jos Rendn  Mikael Olsson 《Wear》2001,250(1-12):744-754
The wear behaviour of some low alloyed steels has been investigated using a laboratory impeller–tumbler wear test equipment in which the steel samples are worn by angular granite particles under combined impact/abrasion wear contact conditions. The wear of the steels was evaluated by weight loss of the steel samples while the wear mechanisms of the steels were investigated by post-test light optical microscopy (LOM), scanning electron microscopy and energy dispersive X-ray analysis. The worn steel surfaces display a very rough surface topography with pronounced craters and distinct grooves caused by high and low angle impacts, i.e. abrasive wear, respectively. Besides, fragments of embedded granite particles are frequently observed in the worn surface of the steels. The wear of the steels tends to decrease with increasing steel hardness. However, instead of using the bulk hardness value the hardness of the worn/plastically deformed surface layer should be used when modelling the wear resistance. Further, the wear resistance of the steels was found to be dependent on the microstructure and chemical composition. Steels with similar type of microstructure show a linear decrease in weight loss with decreasing grain size and increasing carbon content.  相似文献   

15.
The wear resistance of a low alloy plastic mold steel has been studied under pin-on-flat reciprocating configuration against AISI 52100 steel pins, under variable sliding frequency. The as-received material (HTO; 33 HRC) was heat treated under variable conditions to obtain different microstructures and hardness (HT1, quenched 880 °C, 58 HRC; HT2, tempered 550 °C, 43.4 HRC; HT3, tempered 300 °C, 52 HRC; HT4, annealed, 26 HRC). Under low sliding frequency (1 Hz), no significant differences in the wear resistance of the different materials are observed. Only at 8 Hz, a relationship between hardness and wear resistance is found. The softer annealed material HT4 shows an increasing wear rate under increasing frequency, while the quenched steel HT1 gives the lowest wear at the highest frequency. Wear mechanisms have been studied from SEM and EDS observations. Only HT4 shows a transition from the abrasive and oxidative wear mechanisms found in all cases to an adhesive wear mechanism under the highest frequency.  相似文献   

16.
试验研究了ZK60镁合金表面滚压加工中工艺参数对试件表面粗糙度、表面形貌、表面残余应力和表层显微硬度的影响,结果表明滚压力和重复滚压次数对试件的表面粗糙度、表面形貌以及表面残余应力和表层硬度影响程度较大,滚压速度影响较小。对精车ZK60镁合金试件进行滚压加工,试件表面粗糙度R a、R z最大减小了50.3%和48.1%;残余压应力最大可达-54.55 MPa;显微硬度从试件表层到内部基体材料逐渐降低,表层硬度值最大为92.83 HV 0.25,比基体材料硬度提高了15.32%。  相似文献   

17.
This paper is focused on the process of ball burnishing. The influence of tool stiffness on surface roughness parameters was considered theoretically, while experimental investigation was conducted to establish the influence of initial surface roughness (previous machining) on the effects of ball burnishing as the finishing process. Experimental investigations were conducted over a wide interval of most influential process parameters (burnishing forces, burnishing feed, and number of burnishing passes). The material used in the experiments was aluminum alloy EN AW-6082 (AlMgSi1) T651. Burnishing was performed using a specially designed tool of high stiffness. Statistical analysis of experimental data revealed strong correlation between roughness, R a, and burnishing force, burnishing feed, and number of passes for the three surfaces, each with different roughness parameters. Particular combinations of process parameters yielded very low surface roughness, R a, equivalent to polishing. It is worth noting that high surface quality can be achieved with relatively small burnishing forces, which differs from the investigations published so far. Contrary to conventional approaches, which are based on elastic tool systems, the authors propose the burnishing process to be conducted with high-stiffness tools. Further investigation shall be focused on optimization of burnishing process parameters in order to achieve surface finish equivalent to high polish.  相似文献   

18.
ABSTRACT

Polymers are utilized in numerous tribological applications because of their excellent characteristics; for example, accommodating shock loading and shaft misalignment. A high surface finish is required to ensure consistently good performance and extended service life of manufactured polymeric components. Burnishing is the best choice as a finishing process for this study due to its ability to increase hardness, fatigue strength, and wear resistance and also introduce compressive residual stress on the burnished workpiece. Due to the complexity and uncertainty of the machining processes, soft computing techniques are preferred for anticipating the performance of the machining processes. In this study, ANFIS as an adaptive neuro-fuzzy inference system was applied to anticipate the workpiece hardness and surface roughness after the roller burnishing process. Five burnishing variables, including burnishing depth, feed rate, speed, roller width, and lubrication mode, were analyzed. A Gauss membership function was used for the training process in this study. The predicted surface roughness and hardness data were compared with experimental results and indicated that the Gauss membership function in ANFIS has satisfying accuracy as high as 97% for surface roughness and 96% for hardness. Furthermore, the generated compressive residual stress on the burnished surface was studied by a 2D finite element model (FEM). The simulated results of residual stress were validated with the experimental results obtained from X-ray diffraction (XRD) tests.  相似文献   

19.
使用自主设计的高效平面滚压刀具对纯铜进行表面制造,利用塑性变形诱导在纯铜表面制备梯度纳米结构;采用金相显微镜、透射电子显微镜等对梯度纳米结构进行表征,量化变形强化层厚度,考察晶粒尺寸分布;对梯度纳米结构的磨损行为进行研究,并解释了相关机理。结果表明,滚压诱导后表层纳米晶粒细化小于20 nm,并随深度逐渐增至基体晶粒尺寸,形成了十分明显的梯度结构,同时具有较为理想的表面粗糙度和截面硬度分布;干摩擦试验表明,低载时梯度纳米结构具有较好抗粘着能力,摩擦性能较好;高载时由于表层纳米结构强烈变形,微碎裂及随后的三体磨损反而降低了摩擦性能。  相似文献   

20.
It is well known that the no-chip machining process, burnishing, can easily improve surface roughness, waviness and hardness. To get the practical useful parameters, the effects of various burnishing parameters (spindle speed, depth, feed, burnishing radius and lathe) on surface roughness and waviness of the non-ferrous components were studied experimentally with a theoretical analysis. The experiments were conducted with a simply designed cylindrical surfaced polycrystalline diamond tool developed by us. It was found that smaller parameters do not mean lower surface roughness or waviness and different optimum burnishing parameters can be got under different burnishing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号