首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
《工业建筑》2021,51(4):194-198,212
为了研究配置纤维增强复合材料(FRP)筋和普通钢筋的工程用水泥复合材料(ECC)-混凝土组合梁的抗弯性能,通过四点加载试验测试了具有不同ECC高度替换率的32根混合配置FRP筋和普通钢筋的组合梁弯曲破坏。试验结果表明,由于ECC中纤维材料具有出色的抗拉性能,与具有相同配筋的普通混凝土梁相比,混合梁和ECC梁的开裂、屈服、极限弯矩和刚度都得到了改善,平均裂纹间距和宽度随着ECC高度替换率的增加而减小。尽管传统普通混凝土梁与混合增强复合材料梁的配筋率基本相同,但是混合增强复合材料梁的延性高于普通混凝土梁,配筋的ECC梁由于其出色的变形能力而具有很好的能量消散能力。  相似文献   

2.
《混凝土》2017,(11)
为研究ECC对钢筋混凝土梁受弯性能的改善,对2组不同配筋率的5种不同ECC替代高度率的钢筋增强ECC-混凝土复合梁进行了静力受弯性能试验。测试了试件的开裂荷载,裂缝的开展,各级荷载下的应变,以及试件的极限荷载,验证了平截面假定。研究表明,ECC增强钢筋混凝土复合梁的抗弯承载力高于同配筋率的钢筋混凝土梁,且梁的裂缝细密;当钢筋屈服时,复合梁的裂缝宽度均小于规范的限值;钢筋与ECC、ECC与混凝土黏结良好,可以协调变形,作为整体共同工作。  相似文献   

3.
为了研究不同筋材增强工程水泥基复合材料(ECC)受弯构件的力学性能,设计并制作6个几何尺寸相同的试验梁,包括形状记忆合金(SMA)增强ECC(SMA-ECC)梁、GFRP增强ECC(GFRP-ECC)梁、钢绞线增强ECC(SS-ECC)梁、SMA/GFRP增强ECC(SMA/GFRP-ECC)梁、钢筋增强ECC(R-ECC)梁和普通钢筋混凝土(RC)对比梁。通过低周单向循环加载试验,研究相同加载条件下相同配筋率的各试验梁的破坏过程、承载能力、耗能能力、位移延性、残余变形和自复位性能,考察SMA/GFRP-ECC梁的力学性能。结果表明:与普通钢筋混凝土梁相比,复合配筋增强ECC梁在加载过程中呈现出明显的多缝开裂特征,具有更好的延性;与采用其他筋材的复合配筋增强ECC梁相比,SMA/GFRP可以使梁兼具大承载力、高耗能以及自复位能力;SMA/GFRP-ECC梁具有较高承载力、延性以及损伤自修复、位移自复位能力。  相似文献   

4.
为解决纤维增强复材(FRP)筋混凝土梁裂缝宽度和变形均较大的问题,采用受拉性能优良的工程用水泥基复合材料(ECC)取代FRP筋周围受拉混凝土形成FRP筋ECC-混凝土复合梁。通过对2组FRP筋ECC-混凝土复合梁、1组钢筋ECC-混凝土复合梁(每组5种不同ECC替代高度)的受弯试验,分析试件的开裂、屈服、极限荷载以及各级荷载下试件的挠度、裂缝、纵筋应变、混凝土平均应变。研究表明:钢筋/FRP筋与混凝土/ECC有较好的协同变形能力,ECC与混凝土也有较好的黏结性能;复合梁截面的平均应变均符合平截面假定;复合梁在正常使用状态下,受拉区ECC能充分发挥其应变硬化特性,形成较多细而密的裂缝;FRP筋ECC-混凝土复合梁可有效控制梁的变形值,提高梁的抗弯承载能力。  相似文献   

5.
基于钢筋ECC/混凝土复合梁的三点弯曲加载试验,主要研究剪跨比、ECC层厚度和配箍率对复合梁受剪性能的影响,研究结果表明,与RC梁相比,当采用同体积同强度的ECC材料替换梁中部分混凝土,复合梁的极限承载力与抗剪延性均明显提高;ECC层的存在还可有效抑制复合梁斜裂缝的开展,并延缓梁内箍筋屈服,且随着ECC层厚度的增大,复合梁的承载力和延性越大;剪跨比依然是决定复合梁破坏形态的关键因素,由于PVA纤维的桥接承拉作用,配箍率较大且ECC层较厚的复合梁,发生剪压破坏时其箍筋更不易屈服。  相似文献   

6.
设计了一个复合受力作用下预应力钢筋混凝土简支梁,将梁侧不同位置和不同数量的普通钢筋替换为等截面面积的预应力筋并对其适当张拉,建立了四种分析方案。利用ANSYS10.0软件对四种方案的有限元模型进行数值模拟分析,获得混凝土梁变形图、混凝土梁裂缝图。通过分析表明,将预应力混凝土梁部分普通钢筋替换为等截面面积的预应力筋并对其适当张拉的配筋形式,与普通预应力混凝土梁相比,提高了预应力混凝土梁的受力性能。  相似文献   

7.
采用拉应变可达3%~5%、极限受拉破坏时平均裂缝间距和平均裂缝宽度仅为1mm~2mm和60μm~100μm的工程用水泥基复合材料(engineered cementitious composite,ECC)替换普通钢筋混凝土梁受拉区的部分混凝土材料形成ECC-RC复合梁,可提高构件的承载能力、延性和耐久性。文章系统介绍了工程水泥基复合材料的力学性能及其与钢筋粘结的本构关系,并总结了ECC-RC复合梁的弯曲抗裂和正截面承载力的计算理论,以及复合梁界限条件、变形能力、延性和配筋率对ECC梁弯曲性能的影响,可供工程设计人员参考。  相似文献   

8.
为进一步研究工程用水泥基复合材料(ECC)与超高强钢筋组合成的超高强钢筋ECC梁(UHSRRE梁)的受弯性能,对3根UHSRRE梁、1根普通强度钢筋增强ECC梁(RECC梁)和1根普通强度钢筋增强混凝土梁(RC梁)进行弯曲试验,分析弯曲试验现象、ECC应变、延性性能和特征弯矩,并研究纵筋配筋率对UHSRRE梁承载力的影响。结果表明:UHSRRE梁和RECC梁的控裂能力比RC梁的控裂能力强; 与RECC梁相比,UHSRRE梁并未因采用超高强钢筋而使其控裂能力明显下降; UHSRRE梁截面应变基本符合平均应变的平截面假定,梁受拉区边缘的ECC应变小于ECC单轴受拉极限应变,梁受拉区的ECC始终不退出工作; UHSRRE梁受拉区和受压区边缘ECC应变的最大值、受压区高度和特征弯矩(除开裂弯矩)都随纵筋配筋率增加而变大; 随纵筋配筋率增加,UHSRRE梁的能量延性系数先增后减; 当UHSRRE梁具有适当纵筋配筋率时,其延性性能可优于RECC梁的延性性能。  相似文献   

9.
ECC是具有拉伸应变硬化特性和多裂缝开展机制的一种高延性纤维增强水泥基复合材料。通过试验研究考察了ECC的延性变形行为对钢筋增强ECC梁在往复荷载下受力性能的影响,并与普通钢筋混凝土梁进行了对比。结果表明,ECC的使用能够显著提高构件延性和耗能能力。基于ECC在往复荷载作用下的试验结果,编制了ECC在往复荷载作用下的简化本构模型程序,并且基于纤维模型对钢筋增强ECC梁在往复荷载作用下受力性能进行了数值模拟。模拟结果表明,所采用的ECC本构模型能够较为准确地模拟钢筋增强ECC受弯构件在往复荷载作用下的性能指标,如承载力、残余变形和耗能能力等。  相似文献   

10.
《混凝土》2017,(12)
ECC是具有拉伸应变硬化特性和多裂缝开展机制的一种高延性纤维增强水泥基复合材料。通过试验研究考察了ECC的延性变形行为对钢筋增强ECC梁在往复荷载下受力性能的影响,并与普通钢筋混凝土梁进行了对比。结果表明,ECC的使用能够显著提高构件延性和耗能能力。基于ECC在往复荷载作用下的试验结果,编制了ECC在往复荷载作用下的简化本构模型程序,并且基于纤维模型对钢筋增强ECC梁在往复荷载作用下受力性能进行了数值模拟。模拟结果表明,所采用的ECC本构模型能够较为准确地模拟钢筋增强ECC受弯构件在往复荷载作用下的性能指标,如承载力、残余变形和耗能能力等。  相似文献   

11.
俞家欢  杨楠  赵同峰  刘明 《工业建筑》2012,(Z1):553-557,552
研究了PP ECC梁的四点弯曲试验性能,制作了钢筋增强PP ECC梁,钢绞线GFRP筋增强PPECC梁,素PP ECC梁和普通钢筋混凝土梁4组试件。在试验研究中,主要考虑了配筋率、龄期等参数,对比了钢筋增强PP ECC梁、钢绞线GFRP筋增强PP ECC梁、素ECC梁与普通钢筋混凝土梁的弯曲性能,测试了试件的开裂荷载、裂缝的开展、各级荷载下的应变以及试件的极限荷载,验证了平截面假定。结果表明,对不同配筋率的PP ECC梁,配筋率越大,极限承载力增加,但极限变形减小,裂缝宽度的变化不明显。同一配筋率下,PP ECC梁比普通钢筋混凝土梁具有更高的承载力和变形性能,在屈服时刻裂缝宽度可控制在0.1mm以内。  相似文献   

12.
配筋钢管混凝土柱抗压性能   总被引:2,自引:0,他引:2  
对配筋钢管混凝土柱的轴心受压性能进行了试验研究和理论分析;研究了配筋钢管混凝土短柱的受力性能、变形能力和破坏形态,给出了变形和极限承载能力的试验结果;分析了加配钢筋的作用及其对钢管混凝土柱变形和极限承载力的影响。最后探讨了配筋钢管混凝土短柱轴心受压承载力的计算方法,给出了简化计算公式。结果表明,钢管混凝土短柱加配钢筋以后,改变了其破坏形态,提高了其极限承载能力和变形性能。  相似文献   

13.
通过对碳纤维布加固钢筋ECC-混凝土复合梁、钢筋ECC梁和钢筋混凝土梁进行静力受弯试验,研究碳纤维布锚固长度、环箍锚固数量对不同ECC高度替代率的ECC-混凝土复合梁承载能力、破坏形态、裂缝、挠度的影响。研究表明,ECC-混凝土复合梁、ECC梁的承载能力高于钢筋混凝土梁;随着碳纤维布锚固长度和环箍数量增加,复合梁表面裂缝数量增加的同时裂缝间距减小;经加固后构件的开裂荷载、屈服荷载及极限荷载较未加固试件明显提高,且粘结碳纤维布加固对于控制构件的变形和裂缝有明显的效果。  相似文献   

14.
设计了一批受拉区为SFRC、受压区为SCC的钢筋复合梁,分析了纵筋配筋率、SFRC替换层钢纤维体积掺量以及替换层高度对复合梁在四点弯曲荷载作用下的承载力、挠度以及裂缝形态的影响,并与普通混凝土梁进行了对比。通过理论分析计算得出了SFRC/SCC复合梁的承载力表达式,并将理论计算结果与试验数据进行了对比分析,以验证表达式的合理性。结果表明:配筋率是提升复合梁承载力的首要因素,1.32%配筋率相对于0.79%配筋率的极限承载力最大可提升24.1%;钢纤维替换层对复合梁的承载力提升并不明显,但对于复合梁的挠度与裂缝宽度控制有明显作用,将替换层高度由50 mm提升至150 mm时,复合梁的挠度和主裂缝宽度最大分别降低了9.2%和77.81%。  相似文献   

15.
《混凝土》2018,(10)
为了进一步研究对高延性纤维水泥基复合材料与混凝土共同作用下的力学性能,提出新型FRP筋-钢筋复合增强ECC/混凝土组合梁构件,将FRP筋配制在梁构件边角处,而ECC仅用于梁构件易于开裂的受拉区。旨在有效提高梁的延性和耐久性。首先,提出ECC简化应力-应变关系模型,采用截面条带法对构件的受弯性能进行分析;结果表明:试验结果与模拟结果吻合较好,验证了模型的可靠性。在此基础上进行参数分析,分析了不同配筋率、ECC层厚度、FRP筋种类等参数对构件受弯性能的影响。结果表明配筋率可大大提高构件的受弯性能;ECC层厚度对梁构件弯矩-曲率曲线影响不大;三种FRP筋中CFRP筋梁的承载力最高而GFRP筋梁的变形性能最好;最后通过对试验数据的拟合,得出曲率-裂缝宽度关系曲线,并分析三种不同因素对梁裂缝宽度的影响。  相似文献   

16.
在三维层面上建立FRP筋-ECC-混凝土复合梁计算模型,通过有限元计算结果与试验数据的对比分析验证了该模型和计算方法的有效性,以此基础上研究了ECC厚度、BFRP筋配筋率和混凝土强度对复合梁抗弯性能的影响规律。研究结果表明:当ECC强度大于混凝土的强度时,受拉区ECC层的厚度越大,复合梁的承载力越高;当ECC强度和混凝土强度相当时,综合考虑构件经济性与力学性能,复合梁受拉区ECC层的厚度取70mm较为理想;增加FRP筋配筋率是提高复合梁承载力的有效手段。  相似文献   

17.
《工业建筑》2021,51(6):24-28
混凝土打印工艺的要求使得梁构件无法配置箍筋,为此设计了不同桁架式配筋的打印混凝土梁构件,并对其进行静力加载试验。对不同桁架数、不同纵筋尺寸的打印混凝土梁分别进行了正截面破坏试验和斜截面破坏试验,研究了桁架式配筋打印混凝土梁在静力加载下正截面与斜截面的破坏特征、荷载与挠度曲线。试验表明,适筋破坏的桁架式配筋打印混凝土梁正截面抗弯承载力与参照普通混凝土单筋矩形截面梁的计算承载力相近,但桁架的腹筋提高了梁的整体刚度;桁架腹杆筋向支座弯起部位的斜截面抗剪承载力与按普通混凝土弯起钢筋部位斜截面计算承载力相差较大。  相似文献   

18.
为研究再生混凝土梁的弯曲性能,进行了钢筋再生混凝土梁及其经CFRP加固后的受弯性能试验研究,分析了再生粗骨料取代率和CFRP加固层数对再生混凝土梁受力性能的影响,比较了钢筋再生混凝土梁加固前后的挠度和裂缝扩展情况。试验结果表明:再生混凝土梁的变形能力和受弯承载力较普通混凝土梁没有明显降低,但其刚度和延性均有所降低,可通过CFRP加固提高其刚度和极限荷载,但不能改善其变形能力; CFRP加固层数对钢筋再生混凝土梁的开裂荷载、屈服荷载和极限荷载影响较大,其中极限荷载受加固层数影响最大。通过理论计算和有限元分析,建立了钢筋再生混凝土梁及其经CFRP加固后的受弯承载力计算式,理论计算结果与钢筋再生混凝土梁的试验结果符合较好。研究成果可为再生混凝土梁的工程应用提供参考依据。  相似文献   

19.
文章通过无筋和配筋活性粉末混凝土T形梁的抗弯试验,对活性粉末混凝土梁的弯曲性能及其影响因素进行分析,与普通钢筋混凝土相比,活性粉末混凝土的抗裂性能和极限承载力有了显著的提高,参照普通钢筋混凝土梁正截面承载力计算模型,建立了钢筋活性粉末混凝土受弯构件正截面承载力计算公式。  相似文献   

20.
设计制作了三组不同层数的碳纤维布(CFS)加固受弯构件,分别为玄武岩纤维复材(BFRP)筋混凝土梁、BFRP筋工程用水泥基复合材料(ECC)梁和BFRP筋ECC-混凝土复合梁,并对其进行受弯性能试验研究。研究了碳纤维布粘贴层数对加固试件极限荷载、破坏形态、裂缝和变形的影响。结果表明:相同荷载下,复合梁和ECC梁试件的变形和裂缝宽度均小于普通混凝土梁试件。在受弯构件受拉区配置ECC可有效提高构件抵抗变形和裂缝的能力。经粘贴碳纤维布加固后的试件的开裂荷载和极限荷载均大于未加固试件,粘贴一、二、三层CFS加固的复合梁极限荷载较未加固梁分别增加了12. 5%、16. 6%、19. 7%。粘贴CFS布可有效提高构件的承载力和抵抗变形、裂缝的能力。改善效果随CFS粘贴层数的增加而增大,但提升幅度逐渐减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号